Quadratic Polynomial Regression Using Serial Observation Processing: Implementation within DART

Daniel Hodyss Naval Research Laboratory, Monterey, California

Search for other papers by Daniel Hodyss in
Current site
Google Scholar
PubMed
Close
,
Jeffrey L. Anderson Data Assimilation Research Section, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jeffrey L. Anderson in
Current site
Google Scholar
PubMed
Close
,
Nancy Collins Data Assimilation Research Section, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Nancy Collins in
Current site
Google Scholar
PubMed
Close
,
William F. Campbell Naval Research Laboratory, Monterey, California

Search for other papers by William F. Campbell in
Current site
Google Scholar
PubMed
Close
, and
Patrick A. Reinecke Naval Research Laboratory, Monterey, California

Search for other papers by Patrick A. Reinecke in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It is well known that the ensemble-based variants of the Kalman filter may be thought of as producing a state estimate that is consistent with linear regression. Here, it is shown how quadratic polynomial regression can be performed within a serial data assimilation framework. The addition of quadratic polynomial regression to the Data Assimilation Research Testbed (DART) is also discussed and its performance is illustrated using a hierarchy of models from simple scalar systems to a GCM.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel Hodyss, daniel.hodyss@nrlmry.navy.mil

Abstract

It is well known that the ensemble-based variants of the Kalman filter may be thought of as producing a state estimate that is consistent with linear regression. Here, it is shown how quadratic polynomial regression can be performed within a serial data assimilation framework. The addition of quadratic polynomial regression to the Data Assimilation Research Testbed (DART) is also discussed and its performance is illustrated using a hierarchy of models from simple scalar systems to a GCM.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel Hodyss, daniel.hodyss@nrlmry.navy.mil
Save
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28942903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, doi:10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2010: A non-Gaussian ensemble filter update for data assimilation. Mon. Wea. Rev., 138, 41864198, doi:10.1175/2010MWR3253.1.

  • Anderson, J. L., and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 14521463, doi:10.1175/JTECH2049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, https://doi.org/10.1175/JCLI-3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., B. Wyman, S. Zhang, and T. Hoar, 2005: Assimilation of surface pressure observations using an ensemble filter in an idealized global atmospheric prediction system. Bull. Amer. Meteor. Soc., 62, 29252938, https://doi.org/10.1175/JAS3510.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724, doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, doi:10.1007/s10236-003-0036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodyss, D., 2011: Ensemble state estimation for nonlinear systems using polynomial expansions in the innovation. Mon. Wea. Rev., 139, 35713588, doi:10.1175/2011MWR3558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodyss, D., 2012: Accounting for skewness in ensemble data assimilation. Mon. Wea. Rev., 140, 23462358, doi:10.1175/MWR-D-11-00198.1.

  • Hodyss, D., and W. F. Campbell, 2013: Square root and perturbed observation ensemble generation techniques in Kalman and quadratic ensemble filtering algorithms. Mon. Wea. Rev., 141, 25612573, doi:10.1175/MWR-D-12-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodyss, D., W. F. Campbell, and J. S. Whitaker, 2016: Observation-dependent posterior inflation for the ensemble Kalman filter. Mon. Wea. Rev., 144, 26672684, doi:10.1175/MWR-D-15-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, doi:10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, W., and J. Hansen, 2004: Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth. Mon. Wea. Rev., 132, 19661981, doi:10.1175/1520-0493(2004)132<1966:IOSADF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., D. Hodyss, and C. Bishop, 2014: Errors in ensemble Kalman smoother estimates of cloud microphysical parameters. Mon. Wea. Rev., 142, 16311654, doi:10.1175/MWR-D-13-00290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, doi:10.1175//2555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 484 169 12
PDF Downloads 254 87 2