Ensemble Kalman Filter Data Assimilation for the Model for Prediction Across Scales (MPAS)

Soyoung Ha National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Soyoung Ha in
Current site
Google Scholar
PubMed
Close
,
Chris Snyder National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Chris Snyder in
Current site
Google Scholar
PubMed
Close
,
William C. Skamarock National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by William C. Skamarock in
Current site
Google Scholar
PubMed
Close
,
Jeffrey Anderson National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jeffrey Anderson in
Current site
Google Scholar
PubMed
Close
, and
Nancy Collins National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Nancy Collins in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A global atmospheric analysis and forecast system is constructed based on the atmospheric component of the Model for Prediction Across Scales (MPAS-A) and the Data Assimilation Research Testbed (DART) ensemble Kalman filter. The system is constructed using the unstructured MPAS-A Voronoi (nominally hexagonal) mesh and thus facilitates multiscale analysis and forecasting without the need for developing new covariance models at different scales. Cycling experiments with the assimilation of real observations show that the global ensemble system is robust and reliable throughout a one-month period for both quasi-uniform and variable-resolution meshes. The variable-mesh assimilation system consistently provides higher-quality analyses than those from the coarse uniform mesh, in addition to the benefits of the higher-resolution forecasts, which leads to substantial improvements in 5-day forecasts. Using the fractions skill score, the spatial scale for skillful precipitation forecasts is evaluated over the high-resolution area of the variable-resolution mesh. Skill decreases more rapidly at smaller scales, but the variable mesh consistently outperforms the coarse uniform mesh in precipitation forecasts at all times and thresholds. Use of incremental analysis updates (IAU) greatly decreases high-frequency noise overall and improves the quality of EnKF analyses, particularly in the tropics. Important aspects of the system design related to the unstructured Voronoi mesh are also investigated, including algorithms for handling the C-grid staggered horizontal velocities.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Soyoung Ha, syha@ucar.edu

Abstract

A global atmospheric analysis and forecast system is constructed based on the atmospheric component of the Model for Prediction Across Scales (MPAS-A) and the Data Assimilation Research Testbed (DART) ensemble Kalman filter. The system is constructed using the unstructured MPAS-A Voronoi (nominally hexagonal) mesh and thus facilitates multiscale analysis and forecasting without the need for developing new covariance models at different scales. Cycling experiments with the assimilation of real observations show that the global ensemble system is robust and reliable throughout a one-month period for both quasi-uniform and variable-resolution meshes. The variable-mesh assimilation system consistently provides higher-quality analyses than those from the coarse uniform mesh, in addition to the benefits of the higher-resolution forecasts, which leads to substantial improvements in 5-day forecasts. Using the fractions skill score, the spatial scale for skillful precipitation forecasts is evaluated over the high-resolution area of the variable-resolution mesh. Skill decreases more rapidly at smaller scales, but the variable mesh consistently outperforms the coarse uniform mesh in precipitation forecasts at all times and thresholds. Use of incremental analysis updates (IAU) greatly decreases high-frequency noise overall and improves the quality of EnKF analyses, particularly in the tropics. Important aspects of the system design related to the unstructured Voronoi mesh are also investigated, including algorithms for handling the C-grid staggered horizontal velocities.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Soyoung Ha, syha@ucar.edu
Save
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224, https://doi.org/10.1111/j.1600-0870.2006.00216.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, https://doi.org/10.1111/j.1600-0870.2008.00361.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 23592371, https://doi.org/10.1175/MWR-D-11-00013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. D. Silva, and D. Ledvina, 1996: Data assimilation using Incremental Analysis Updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonaventura, L., A. Iske, and E. Miglio, 2011: Kernel-based vector field reconstruction in computational fluid dynamic models. Int. J. Numer. Methods Fluids, 66, 714729, https://doi.org/10.1002/fld.2279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 25322559, https://doi.org/10.1175/MWR-D-14-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Côté, J., M. Roch, A. Staniforth, and L. Fillion, 1993: A variable-resolution semi-Lagrangian finite-element global model of the shallow-water equations. Mon. Wea. Rev., 121, 231243, https://doi.org/10.1175/1520-0493(1993)121<0231:AVRSLF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., 2010: Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Wea. Forecasting, 25, 749767, https://doi.org/10.1175/2009WAF2222302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., J. Zhu, F. Fang, C. C. Pain, and I. M. Navon, 2016: Ensemble data assimilation applied to an adaptive mesh ocean model. Int. J. Numer. Methods Fluids, 82, 9971009, https://doi.org/10.1002/fld.4247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Rabinovitz, M. S., L. L. Takacs, and R. C. Govindaraju, 2002: A variable-resolution stretched-grid general circulation model and data assimilation system with multiple areas of interest: Studying the anomalous regional climate events of 1998. J. Geophys. Res., 107, 4768, https://doi.org/10.1029/2002JD002177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., E. Kalnay, T. Miyoshi, K. Ide, and B. R. Hunt, 2011: Balance and ensemble Kalman filter localization techniques. Mon. Wea. Rev., 139, 511522, https://doi.org/10.1175/2010MWR3328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, S., J. Berner, and C. Snyder, 2015: A comparison of model error representations in mesoscale ensemble data assimilation. Mon. Wea. Rev., 143, 38933911, https://doi.org/10.1175/MWR-D-14-00395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, https://doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc, 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 32693289, https://doi.org/10.1256/qj.05.135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2009: Covariance localisation and balance in an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 135, 11571176, https://doi.org/10.1002/qj.443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., and J. D. Doyle, 2005: Extension of an orographic-drag parameterization scheme to incorporate orographic anisotropy and flow blocking. Quart. J. Roy. Meteor. Soc., 131, 18931921, https://doi.org/10.1256/qj.04.160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139, 21632169, https://doi.org/10.1175/MWR-D-10-05046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531, https://doi.org/10.2151/jmsj.2004.507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laroche, S., P. Gauthier, J. St-James, and J. Morneau, 1999: Implementation of a 3D variational data assimilation system at the Canadian Meteorological Centre. Part II: The regional analysis. Atmos.–Ocean, 37, 281307, https://doi.org/10.1080/07055900.1999.9649630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, L., and J. S. Whitaker, 2016: A four-dimensional incremental analysis update for the ensemble Kalman filter. Mon. Wea. Rev., 144, 26052621, https://doi.org/10.1175/MWR-D-15-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., N. E. Bowler, A. M. Clayton, and S. R. Pring, 2015: Comparison of Hybrid-4DEnVar and Hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212229, https://doi.org/10.1175/MWR-D-14-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 27912808, https://doi.org/10.1175/1520-0493(2002)130<2791:ESBAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., N. Roberts, and S. A. Thompson, 2013: A long-term assessment of precipitation forecast skill using the Fractions Skill Score. Meteor. Appl., 20, 176186, https://doi.org/10.1002/met.296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere (in Russian). Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Nerger, L. S., S. Danilov, G. Kivman, W. Hiller, and J. Schrter, 2007: Data assimilation with the ensemble Kalman filter and the SEIK filter applied to a finite element model of the North Atlantic. J. Mar. Syst., 65, 288298, https://doi.org/10.1016/j.jmarsys.2005.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, P. S., and S. R. M. Barros, 2014: On vector field reconstructions for semi-Lagrangian transport methods on geodesic staggered grids. J. Comput. Phys., 273, 185211, https://doi.org/10.1016/j.jcp.2014.04.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polavarapu, S., S. Ren, A. M. Clayton, D. Sankey, and Y. Rochon, 2004: On the relationship between incremental analysis updating and incremental digital filtering. Mon. Wea. Rev., 132, 24952502, https://doi.org/10.1175/1520-0493(2004)132<2495:OTRBIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauscher, S., T. D. Ringler, W. C. Skamarock, and A. A. Mirin, 2013: Exploring a global multiresolution modeling approach using aquaplanet simulations. J. Climate, 26, 24322452, https://doi.org/10.1175/JCLI-D-12-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T., L. Ju, and M. Gunzburger, 2008: A multiresolution method for climate system modeling: Application of spherical centroidal Voronoi tessellations. Ocean Dyn., 58, 475498, https://doi.org/10.1007/s10236-008-0157-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T., J. Thuburn, J. B. Klemp, and W. C. Skamarock, 2010: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. J. Comput. Phys., 229, 30653090, https://doi.org/10.1016/j.jcp.2009.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T., D. Jacobsen, M. Gunzburger, L. Ju, M. Duda, and W. Skamarock, 2011: Exploring a multiresolution modeling approach within the shallow-water equations. Mon. Wea. Rev., 139, 33483368, https://doi.org/10.1175/MWR-D-10-05049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N., 2008: Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model. Meteor. Appl., 15, 163169, https://doi.org/10.1002/met.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, L. D. Fowler, M. G. Duda, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Thuburn, J., T. D. Ringler, W. C. Skamarock, and J. B. Klemp, 2009: Numerical representation of geostrophic modes on arbitrarily structured C-grids. J. Comput. Phys., 228, 83218335, https://doi.org/10.1016/j.jcp.2009.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490, https://doi.org/10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., R. Todling, J. Guo, S. E. Cohn, I. M. Navon, and Y. Yang, 2003: The GEOS-3 retrospective data assimilation system: The 6-hour lag case. Mon. Wea. Rev., 131, 21292150, https://doi.org/10.1175/1520-0493(2003)131<2129:TGRDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 804 268 40
PDF Downloads 861 263 42