Optimization of Noah and Noah_MP WRF Land Surface Schemes in Snow-Melting Conditions over Complex Terrain

Elena Tomasi Atmospheric Physics Group, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy

Search for other papers by Elena Tomasi in
Current site
Google Scholar
PubMed
Close
,
Lorenzo Giovannini Atmospheric Physics Group, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy

Search for other papers by Lorenzo Giovannini in
Current site
Google Scholar
PubMed
Close
,
Dino Zardi Atmospheric Physics Group, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy

Search for other papers by Dino Zardi in
Current site
Google Scholar
PubMed
Close
, and
Massimiliano de Franceschi Atmospheric Physics Group, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy

Search for other papers by Massimiliano de Franceschi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The paper presents the results of high-resolution simulations performed with the WRF Model, coupled with two different land surface schemes, Noah and Noah_MP, with the aim of accurately reproducing winter season meteorological conditions in a typical Alpine valley. Accordingly, model results are compared against data collected during an intensive field campaign performed in the Adige Valley, in the eastern Italian Alps. In particular, the ability of the model in reproducing the time evolution of 2-m temperature and of incoming and outgoing shortwave and longwave radiation is examined. The validation of model results highlights that, in this context, WRF reproduces rather poorly near-surface temperature over snow-covered terrain, with an evident underestimation, during both daytime and nighttime. Furthermore it fails to capture specific atmospheric processes, such as the temporal evolution of the ground-based thermal inversion. The main cause of these errors lies in the miscalculation of the mean gridcell albedo, resulting in an inaccurate estimate of the reflected solar radiation calculated by both Noah and Noah_MP. Therefore, modifications to the initialization, to the land-use classification, and to both land surface models are performed to improve model results, by intervening in the calculation of the albedo, of the snow cover, and of the surface temperature. Qualitative and quantitative analyses show that, after these changes, a significant improvement in the comparability between model results and observations is achieved. In particular, outgoing shortwave radiation is lowered, 2-m temperature maxima increased accordingly, and ground-based thermal inversions are better captured.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elena Tomasi, elena.tomasi@unitn.it

Abstract

The paper presents the results of high-resolution simulations performed with the WRF Model, coupled with two different land surface schemes, Noah and Noah_MP, with the aim of accurately reproducing winter season meteorological conditions in a typical Alpine valley. Accordingly, model results are compared against data collected during an intensive field campaign performed in the Adige Valley, in the eastern Italian Alps. In particular, the ability of the model in reproducing the time evolution of 2-m temperature and of incoming and outgoing shortwave and longwave radiation is examined. The validation of model results highlights that, in this context, WRF reproduces rather poorly near-surface temperature over snow-covered terrain, with an evident underestimation, during both daytime and nighttime. Furthermore it fails to capture specific atmospheric processes, such as the temporal evolution of the ground-based thermal inversion. The main cause of these errors lies in the miscalculation of the mean gridcell albedo, resulting in an inaccurate estimate of the reflected solar radiation calculated by both Noah and Noah_MP. Therefore, modifications to the initialization, to the land-use classification, and to both land surface models are performed to improve model results, by intervening in the calculation of the albedo, of the snow cover, and of the surface temperature. Qualitative and quantitative analyses show that, after these changes, a significant improvement in the comparability between model results and observations is achieved. In particular, outgoing shortwave radiation is lowered, 2-m temperature maxima increased accordingly, and ground-based thermal inversions are better captured.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elena Tomasi, elena.tomasi@unitn.it
Save
  • Ball, J. T., I. E. Woodrow, and J. A. Berry, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research, J. Biggins, Ed., Vol. 4, Springer, 221224, doi:10.1007/978-94-017-0519-6_48.

    • Crossref
    • Export Citation
  • Barlage, M., and Coauthors, 2010: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res., 115, D22101, doi:10.1029/2009JD013470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1996: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN-417+STR, National Center for Atmospheric Research, Boulder, CO, 150 pp.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, doi:10.1029/95JD02165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2014: Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study. J. Geophys. Res. Atmos., 119, 13 79513 819, doi:10.1002/2014JD022167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107136, doi:10.1016/0168-1923(91)90002-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., M. Ribas-Carbo, and J. A. Berry, 1992: Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol., 19, 519538, doi:10.1071/PP9920519.

    • Search Google Scholar
    • Export Citation
  • de Ferranti, J., 2013: 30-m topography dataset. Accessed March 2015, http://viewfinderpanoramas.org/.

  • de Franceschi, M., and D. Zardi, 2009: Study of wintertime high pollution episodes during the Brenner-South ALPNAP measurement campaign. Meteor. Atmos. Phys., 103, 237250, doi:10.1007/s00703-008-0327-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006: SGSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397, doi:10.1175/BAMS-87-10-1381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • European Environment Agency, 2006: 100-m landuse cover data. European Environment Agency, http://land.copernicus.eu/pan-european/corine-land-cover/clc-2006/view.

  • Giovannini, L., D. Zardi, and M. de Franceschi, 2011: Analysis of the urban thermal fingerprint of the city of Trento in the Alps. J. Appl. Meteor. Climatol., 50, 11451162, doi:10.1175/2010JAMC2613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giovannini, L., D. Zardi, M. de Franceschi, and F. Chen, 2014a: Numerical simulations of boundary-layer processes and urban-induced alterations in an Alpine valley. Int. J. Climatol., 34, 11111131, doi:10.1002/joc.3750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giovannini, L., G. Antonacci, D. Zardi, L. Laiti, and L. Panziera, 2014b: Sensitivity of simulated wind speed to spatial resolution over complex terrain. Energy Procedia, 59, 323329, doi:10.1016/j.egypro.2014.10.384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giovannini, L., L. Laiti, S. Serafin, and D. Zardi, 2017: The thermally driven diurnal wind system of the Adige Valley in the Italian Alps. Quart. J. Roy. Meteor. Soc., 143, 23892402, doi:10.1002/qj.3092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, doi:10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., and G. A. Riggs, 2016: MODIS/Terra snow cover daily L3 global 500m grid, version 6 [February 2006, Europe]. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, accessed March 2017, doi:10.5067/MODIS/MOD10A1.006.

    • Crossref
    • Export Citation
  • Heimann, D., and Coauthors, 2007: Air pollution, traffic noise and related health effects in the alpine space—A guide for authorities and consulters. ALPNAP Comprehensive Report. Tech. Rep., Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy, 335 pp., http://www.imk-ifu.kit.edu/downloads/institute/ALPNAP_electronic_version.pdf.

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, J., and N. L. Miller, 2007: Analysis of the impact of snow on daily weather variability in mountainous regions using MM5. J. Hydrometeor., 8, 245258, doi:10.1175/JHM565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, J., N. L. Miller, and N. Schlegel, 2010: Sensitivity study of four land surface schemes in the WRF Model. Adv. Meteor., 2010, 167436, doi:10.1155/2010/167436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover. Special Rep. SR 91-16, Cold Region Research and Engineering Lab., U.S. Army Corps. of Engineers, Hanover, NH, 61 pp.

  • Koren, V., J. Schaake, K. Mitchell, Q. Duan, F. Chen, and J. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19 56919 585, doi:10.1029/1999JD900232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuribayashi, M., N. J. Noh, T. M. Saitoh, I. Tamagawa, Y. Wakazuki, and H. Muraoka, 2013: Comparison of snow water equivalent estimated in central Japan by high-resolution simulations using different land-surface models. SOLA, 9, 148152, doi:10.2151/sola.2013-033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., Y. Xia, K. E. Mitchell, M. B. Ek, and D. P. Lettenmaier, 2010: Noah LSM snow model diagnostics and enhancements. J. Hydrometeor., 11, 721738, doi:10.1175/2009JHM1174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and M. Ek, 1984: The influence of atmospheric stability on potential evaporation. J. Climate Appl. Meteor., 23, 222234, doi:10.1175/1520-0450(1984)023<0222:TIOASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and H. L. Pan, 1984: A two-layer model of soil hydrology. Bound.-Layer Meteor., 29, 120, doi:10.1007/BF00119116.

  • Meloysund, V., B. Leira, K. V. Hoiseth, and K. R. Liso, 2007: Predicting snow density using meteorological data. Meteor. Appl., 14, 413423, doi:10.1002/met.40.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Z.-L. Yang, 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeor., 7, 937952, doi:10.1175/JHM538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Z.-L. Yang, 2007: An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res., 112, D21101, doi:10.1029/2007JD008674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007: Development of a simple groundwater model for use in climate models and evaluation with gravity recovery and climate experiment data. J. Geophys. Res., 112, D07103, doi:10.1029/2006JD007522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah_MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, National Center for Atmospheric Research, Boulder, CO, 422 pp., accessed February 2016, doi:10.5065/D6RR1W7M.

    • Crossref
    • Export Citation
  • Pan, H.-L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38, 185202, doi:10.1007/BF00121563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and E. Brun, 2001: Physical properties of snow. Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems, H. G. Jones et al., Eds., Cambridge University Press, 45–118.

  • Qu, X., and A. Hall, 2006: Assessing snow albedo feedback in simulated climate change. J. Climate, 19, 26172630, doi:10.1175/JCLI3750.1.

  • Ragazzi, M., W. Tirler, G. Angelucci, D. Zardi, and E. Rada, 2013: Management of atmospheric pollutants from waste incineration processes: The case of Bozen. Waste Manage. Res., 31, 235240, doi:10.1177/0734242X12472707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaguchi, K., and X. Zeng, 2009: Effects of soil wetness, plant litter, and under-canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3.5). J. Geophys. Res., 114, D01107, doi:10.1029/2008JD010834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., V. I. Koren, Q. Y. Duan, K. Mitchell, and F. Chen, 1996: A simple water balance model (SWB) for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475, doi:10.1029/95JD02892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: A Revised Land Surface Parameterization (SiB2) for atmospheric GCMS. Part I: Model formulation. J. Climate, 9, 676705, doi:10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Su, H., Z.-L. Yang, G.-Y. Niu, and R. Dickinson, 2008: Enhancing the estimation of continental-scale snow water equivalent by assimilating MODIS snow cover with the ensemble Kalman filter. J. Geophys. Res., 113, D08120, doi:10.1029/2007JD009232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 1991: Class—A Canadian land surface scheme for GCMS. I. Soil model. Int. J. Climatol., 11, 111133, doi:10.1002/joc.3370110202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345364, doi:10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, doi:10.1029/2010JD015140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2012: Extending the numerical stability limit of terrain-following coordinate models over steep slopes. Mon. Wea. Rev., 140, 37223733, doi:10.1175/MWR-D-12-00049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., Z. Pu, and X. Zhang, 2013: Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Wea. Forecasting, 28, 893914, doi:10.1175/WAF-D-12-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1653 522 23
PDF Downloads 1540 466 19