Object-Based Analog Forecasts for Surface Wind Speed

Maria E. B. Frediani Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Maria E. B. Frediani in
Current site
Google Scholar
PubMed
Close
,
Thomas M. Hopson National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Thomas M. Hopson in
Current site
Google Scholar
PubMed
Close
,
Joshua P. Hacker National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Joshua P. Hacker in
Current site
Google Scholar
PubMed
Close
,
Emmanouil N. Anagnostou Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Emmanouil N. Anagnostou in
Current site
Google Scholar
PubMed
Close
,
Luca Delle Monache National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Luca Delle Monache in
Current site
Google Scholar
PubMed
Close
, and
Francois Vandenberghe National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Francois Vandenberghe in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Analogs are used as a forecast postprocessing technique, in which a statistical forecast is derived from past prognostic states. This study proposes a method to identify analogs through spatial objects, which are then used to create forecast ensembles. The object-analog technique preserves the field’s spatial relationships, reduces spatial dimensionality, and consequently facilitates the use of artificial intelligence algorithms to improve analog selection. Forecast objects are created with a three-step object selection, combining standard image processing algorithms. The resulting objects are used to find similar forecasts in a training set with a similarity measure based on object area intersection and magnitude. Storm-induced power outages in the Northeast United States motivated the method’s validation for 10-m AGL wind speed forecasts. The training set comprises reforecasts and reanalyses of events that caused damages to the utility infrastructure. The corresponding reanalyses of the best reforecast analogs are used to produce the object-analog ensemble forecasts. The forecasts are compared with other analog forecast methods. Analogs representing lower and upper predictability limits provide references to distinguish the method’s ability (to find good analogs) from the training set’s ability (to provide good analogs) to generate skillful ensemble forecasts. The object-analog forecasts are competitively skillful compared to simpler analog techniques with an advantage of lower spatial dimensionality, while generating reliable ensemble forecasts, with reduced systematic and random errors, maintaining correlation, and improving Brier scores.

NCAR Visiting Scientist, Boulder, Colorado.

Current affiliation: Jupiter Technology Systems, Boulder, Colorado.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maria E. B. Frediani, maria.frediani@uconn.edu

Abstract

Analogs are used as a forecast postprocessing technique, in which a statistical forecast is derived from past prognostic states. This study proposes a method to identify analogs through spatial objects, which are then used to create forecast ensembles. The object-analog technique preserves the field’s spatial relationships, reduces spatial dimensionality, and consequently facilitates the use of artificial intelligence algorithms to improve analog selection. Forecast objects are created with a three-step object selection, combining standard image processing algorithms. The resulting objects are used to find similar forecasts in a training set with a similarity measure based on object area intersection and magnitude. Storm-induced power outages in the Northeast United States motivated the method’s validation for 10-m AGL wind speed forecasts. The training set comprises reforecasts and reanalyses of events that caused damages to the utility infrastructure. The corresponding reanalyses of the best reforecast analogs are used to produce the object-analog ensemble forecasts. The forecasts are compared with other analog forecast methods. Analogs representing lower and upper predictability limits provide references to distinguish the method’s ability (to find good analogs) from the training set’s ability (to provide good analogs) to generate skillful ensemble forecasts. The object-analog forecasts are competitively skillful compared to simpler analog techniques with an advantage of lower spatial dimensionality, while generating reliable ensemble forecasts, with reduced systematic and random errors, maintaining correlation, and improving Brier scores.

NCAR Visiting Scientist, Boulder, Colorado.

Current affiliation: Jupiter Technology Systems, Boulder, Colorado.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maria E. B. Frediani, maria.frediani@uconn.edu
Save
  • Acharya, T., and A. K. Ray, 2005: Image Processing: Principles and Applications. John Wiley & Sons, 425 pp.

    • Crossref
    • Export Citation
  • Ahijevych, D., E. Gilleland, B. G. Brown, and E. E. Ebert, 2009: Application of spatial verification methods to idealized and NWP-gridded precipitation forecasts. Wea. Forecasting, 24, 14851497, https://doi.org/10.1175/2009WAF2222298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alessandrini, S., L. Delle Monache, S. Sperati, and J. Nissen, 2015: A novel application of an analog ensemble for short-term wind power forecasting. Renewable Energy, 76, 768781, https://doi.org/10.1016/j.renene.2014.11.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auroux, D., and J. Blum, 2008: A nudging-based data assimilation method: The Back and Forth Nudging (BFN) algorithm. Nonlinear Processes Geophys., 15, 305319, https://doi.org/10.5194/npg-15-305-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briggs, W. M., and R. A. Levine, 1997: Wavelets and field forecast verification. Mon. Wea. Rev., 125, 13291341, https://doi.org/10.1175/1520-0493(1997)125<1329:WAFFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, B. G., R. Bullock, J. H. Gotway, D. Ahijevych, C. Davis, E. Gilleland, and L. Holland, 2007: Application of the MODE object-based verification tool for the evaluation of model precipitation fields. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 10A.2, https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124856.htm.

  • Casati, B., G. Ross, and D. B. Stephenson, 2004: A new intensity-scale approach for the verification of spatial precipitation forecasts. Meteor. Appl., 11, 141154, https://doi.org/10.1017/S1350482704001239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casati, B., and Coauthors, 2008: Forecast verification: Current status and future directions. Meteor. Appl., 15, 318, https://doi.org/10.1002/met.52.

  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950009331.pdf.

  • Davis, C., B. Brown, and R. Bullock, 2006a: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, https://doi.org/10.1175/MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006b: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 17851796, https://doi.org/10.1175/MWR3146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., T. Nipen, Y. Liu, G. Roux, and R. Stull, 2011: Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Wea. Rev., 139, 35543570, https://doi.org/10.1175/2011MWR3653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 34983516, https://doi.org/10.1175/MWR-D-12-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Djalalova, I., L. Delle Monache, and J. Wilczak, 2015: PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmos. Environ., 108, 7687, https://doi.org/10.1016/j.atmosenv.2015.02.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dougherty, E., 1992: An Introduction to Morphological Image Processing. Tutorial Texts in Optical Engineering, Vol. 9, SPIE Optical Engineering Press, 161 pp.

  • Ebert, E. E., 2008: Fuzzy verification of high-resolution gridded forecasts: A review and proposed framework. Meteor. Appl., 15, 5164, https://doi.org/10.1002/met.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., C. C. Raible, and F. Sielmann, 2003: Analog ensemble forecasts of tropical cyclone tracks in the Australian region. Wea. Forecasting, 18, 311, https://doi.org/10.1175/1520-0434(2003)018<0003:AEFOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frediani, M. E. B., J. P. Hacker, E. N. Anagnostou, and T. Hopson, 2016: Evaluation of PBL parameterizations for modeling surface wind speed during storms in the northeast United States. Wea. Forecasting, 31, 15111528, https://doi.org/10.1175/WAF-D-15-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 14161430, https://doi.org/10.1175/2009WAF2222269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilleland, E., J. Lindström, and F. Lindgren, 2010: Analyzing the image warp forecast verification method on precipitation fields from the ICP. Wea. Forecasting, 25, 12491262, https://doi.org/10.1175/2010WAF2222365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, https://doi.org/10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, https://doi.org/10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau, Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., M. Scheuerer, and G. T. Bates, 2015: Analog probabilistic precipitation forecasts using GEFS reforecasts and climatology-calibrated precipitation analyses. Mon. Wea. Rev., 143, 33003309, https://doi.org/10.1175/MWR-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., D. W. Wanik, B. M. Hartman, E. N. Anagnostou, M. Astitha, and M. E. B. Frediani, 2017: Nonparametric tree-based predictive modeling of storm outages on an electric distribution network. Risk Anal., 37, 441458, https://doi.org/10.1111/risa.12652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., Z. Liu, J.-F. Louis, and C. Grassoti, 1995: Distortion representation of forecast errors. Mon. Wea. Rev., 123, 27582770, https://doi.org/10.1175/1520-0493(1995)123<2758:DROFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopson, T. M., and P. J. Webster, 2010: A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: Forecasting severe floods of 2003–07. J. Hydrometeor., 11, 618641, https://doi.org/10.1175/2009JHM1006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF Model. J. Appl. Meteor. Climatol., 51, 300316, https://doi.org/10.1175/JAMC-D-11-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. D., L. Delle Monache, and S. Alessandrini, 2017: Statistical downscaling of a high-resolution precipitation reanalysis using the analog ensemble method. J. Appl. Meteor. Climatol., 56, 20812095, https://doi.org/10.1175/JAMC-D-16-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruizinga, S., and A. H. Murphy, 1983: Use of an analogue procedure to formulate objective probabilistic temperature forecasts in the Netherlands. Mon. Wea. Rev., 111, 22442254, https://doi.org/10.1175/1520-0493(1983)111<2244:UOAAPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lack, S. A., G. L. Limpert, and N. I. Fox, 2010: An object-oriented multiscale verification scheme. Wea. Forecasting, 25, 7992, https://doi.org/10.1175/2009WAF2222245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., A. Bourgeois, T. Warner, S. Swerdlin, and J. Hacker, 2005: Implementation of observation-nudging based FDDA into WRF for supporting ATEC test operations. 2005 WRF Users' Workshop, Boulder, CO, 4 pp., https://www.researchgate.net/publication/228942774_Implementation_of_observation-nudging_based_on_FDDA_into_WRF_for_supporting_AFEC_test_operations.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Coauthors, 2008: The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part I: Overview of the modeling system, the forecast products, and how the products are used. J. Appl. Meteor. Climatol., 47, 10771092, https://doi.org/10.1175/2007JAMC1653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manor, A., and S. Berkovic, 2015: Bayesian inference aided analog downscaling for near-surface winds in complex terrain. Atmos. Res., 164–165, 2736, https://doi.org/10.1016/j.atmosres.2015.04.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martín, M. L., F. Valero, A. Pascual, J. Sanz, and L. Frias, 2014: Analysis of wind power productions by means of an analog model. Atmos. Res., 143, 238249, https://doi.org/10.1016/j.atmosres.2014.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGill, R., J. W. Tukey, and W. A. Larsen, 1978: Variations of box plots. Amer. Stat., 32, 1216, https://doi.org/10.2307/2683468.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1951: General aspects of extended-range forecasting. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 802–813.

    • Crossref
    • Export Citation
  • Panziera, L., U. Germann, M. Gabella, and P. V. Mandapaka, 2011: NORA—Nowcasting of Orographic Rainfall by means of Analogues. Quart. J. Roy. Meteor. Soc., 137, 21062123, https://doi.org/10.1002/qj.878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., A. J. Monaghan, L. Delle Monache, E. Vanvyve, and D. L. Rife, 2014: Regional assessment of sampling techniques for more efficient dynamical climate downscaling. J. Climate, 27, 15241538, https://doi.org/10.1175/JCLI-D-13-00291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rostkier-Edelstein, D., P. Kunin, T. M. Hopson, Y. Liu, and A. Givati, 2016: Statistical downscaling of seasonal precipitation in Israel. Int. J. Climatol., 36, 590606, https://doi.org/10.1002/joc.4368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sievers, O., K. Fraedrich, and C. C. Raible, 2000: Self-adapting analog ensemble predictions of tropical cyclone tracks. Wea. Forecasting, 15, 623629, https://doi.org/10.1175/1520-0434(2000)015<0623:SAAEPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., N. L. Seaman, and F. S. Binkowski, 1991: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part II: Effects of data assimilation within the planetary boundary layer. Mon. Wea. Rev., 119, 734754, https://doi.org/10.1175/1520-0493(1991)119<0734:UOFDDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiger, J. H., 1980: Tests for comparing elements of a correlation matrix. Psychol. Bull., 87, 245251, https://doi.org/10.1037/0033-2909.87.2.245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., C. S. Coelho, and I. T. Jolliffe, 2008: Two extra components in the Brier score decomposition. Wea. Forecasting, 23, 752757, https://doi.org/10.1175/2007WAF2006116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Dool, H., 1989: A new look at weather forecasting through analogues. Mon. Wea. Rev., 117, 22302247, https://doi.org/10.1175/1520-0493(1989)117<2230:ANLAWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanvyve, E., L. Delle Monache, A. J. Monaghan, and J. O. Pinto, 2015: Wind resource estimates with an analog ensemble approach. Renewable Energy, 74, 761773, https://doi.org/10.1016/j.renene.2014.08.060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vislocky, R. L., and G. S. Young, 1989: The use of perfect prog forecasts to improve model output statistics forecasts of precipitation probability. Wea. Forecasting, 4, 202209, https://doi.org/10.1175/1520-0434(1989)004<0202:TUOPPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanik, D. W., E. N. Anagnostou, B. M. Hartman, M. E. B. Frediani, and M. Astitha, 2015: Storm outage modeling for an electric distribution network in northeastern USA. Nat. Hazards, 79, 13591384, https://doi.org/10.1007/s11069-015-1908-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., M. Paulat, M. Hagen, and C. Frei, 2008: SAL—A novel quality measure for the verification of quantitative precipitation forecasts. Mon. Wea. Rev., 136, 44704487, https://doi.org/10.1175/2008MWR2415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609, https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., C. Draxl, T. Hopson, L. Delle Monache, E. Vanvyve, and B.-M. Hodge, 2015: Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods. Appl. Energy, 156, 528541, https://doi.org/10.1016/j.apenergy.2015.07.059.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3165 1957 829
PDF Downloads 391 88 8