Ensemble Hail Prediction for the Storms of 10 May 2010 in South-Central Oklahoma Using Single- and Double-Moment Microphysical Schemes

Jonathan Labriola Center for Analysis and Prediction of Storms and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Jonathan Labriola in
Current site
Google Scholar
PubMed
Close
,
Nathan Snook Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Nathan Snook in
Current site
Google Scholar
PubMed
Close
,
Youngsun Jung Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Youngsun Jung in
Current site
Google Scholar
PubMed
Close
,
Bryan Putnam Center for Analysis and Prediction of Storms and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Bryan Putnam in
Current site
Google Scholar
PubMed
Close
, and
Ming Xue Center for Analysis and Prediction of Storms and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Explicit prediction of hail using numerical weather prediction models remains a significant challenge; microphysical uncertainties and errors are a significant contributor to this challenge. This study assesses the ability of storm-scale ensemble forecasts using single-moment Lin or double-moment Milbrandt and Yau microphysical schemes in predicting hail during a severe weather event over south-central Oklahoma on 10 May 2010. Radar and surface observations are assimilated using an ensemble Kalman filter (EnKF) at 5-min intervals. Three sets of ensemble forecasts, launched at 15-min intervals, are then produced from EnKF analyses at times ranging from 30 min prior to the first observed hail to the time of the first observed hail. Forty ensemble members are run at 500-m horizontal grid spacing in both EnKF assimilation cycles and subsequent forecasts. Hail forecasts are verified using radar-derived products including information from single- and dual-polarization radar data: maximum estimated size of hail (MESH), hydrometeor classification algorithm (HCA) output, and hail size discrimination algorithm (HSDA) output. Resulting hail forecasts show at most marginal skill, with the level of skill dependent on the forecast initialization time and microphysical scheme used. Forecasts using the double-moment scheme predict many small hailstones aloft, while the single-moment members predict larger hailstones. Near the surface, double-moment members predict larger hailstone sizes than their single-member counterparts. Hail in the forecasts is found to melt too quickly near the surface for members using either of the microphysics schemes examined. Analysis of microphysical budgets in both schemes indicates that both schemes suboptimally represent hail processes, adversely impacting the skill of surface hail forecasts.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonathan Labriola, j.labriola@ou.edu

Abstract

Explicit prediction of hail using numerical weather prediction models remains a significant challenge; microphysical uncertainties and errors are a significant contributor to this challenge. This study assesses the ability of storm-scale ensemble forecasts using single-moment Lin or double-moment Milbrandt and Yau microphysical schemes in predicting hail during a severe weather event over south-central Oklahoma on 10 May 2010. Radar and surface observations are assimilated using an ensemble Kalman filter (EnKF) at 5-min intervals. Three sets of ensemble forecasts, launched at 15-min intervals, are then produced from EnKF analyses at times ranging from 30 min prior to the first observed hail to the time of the first observed hail. Forty ensemble members are run at 500-m horizontal grid spacing in both EnKF assimilation cycles and subsequent forecasts. Hail forecasts are verified using radar-derived products including information from single- and dual-polarization radar data: maximum estimated size of hail (MESH), hydrometeor classification algorithm (HCA) output, and hail size discrimination algorithm (HSDA) output. Resulting hail forecasts show at most marginal skill, with the level of skill dependent on the forecast initialization time and microphysical scheme used. Forecasts using the double-moment scheme predict many small hailstones aloft, while the single-moment members predict larger hailstones. Near the surface, double-moment members predict larger hailstone sizes than their single-member counterparts. Hail in the forecasts is found to melt too quickly near the surface for members using either of the microphysics schemes examined. Analysis of microphysical budgets in both schemes indicates that both schemes suboptimally represent hail processes, adversely impacting the skill of surface hail forecasts.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonathan Labriola, j.labriola@ou.edu
Save
  • Adams-Selin, R. D., and C. Ziegler, 2016: Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Wea. Rev., 144, 49194939, doi:10.1175/MWR-D-16-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Tackacs, A. M. Da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., R. D. Palmer, and G. Zhang, 2014: Dual-wavelength polarimetric radar analyses of tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 242261, doi:10.1175/JAMC-D-13-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caya, A., J. Sun, and C. Snyder, 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133, 30813094, doi:10.1175/MWR3021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., and J. Burroughs, 2003: The tristate hailstorm: The most costly on record. Mon. Wea. Rev., 131, 17341739, doi:10.1175//2549.1.

  • Clark, A. J., W. A. Gallus Jr., M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, doi:10.1175/2009WAF2222222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., M. Xue, and F. Kong, 2010: Growth of spread in convection-allowing and convection-parameterizing ensembles. Wea. Forecasting, 25, 594612, doi:10.1175/2009WAF2222318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, S. M., and J. G. Ladue, 2004: Nonmeteorological factors in warning verification. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P2.7, https://ams.confex.com/ams/pdfpapers/81766.pdf.

  • Dawson, D. T., II, M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, https://dx.doi.org/10.1175/2009MWR2956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, L. J. Wicker, E. R. Mansell, and R. L. Tanamachi, 2012: Impact of the environmental low-level wind profile on ensemble forecasts of the 4 May 2007 Greensburg, Kansas, tornadic storm and associated mesocyclones. Mon. Wea. Rev., 140, 696716, doi:10.1175/MWR-D-11-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, M. Xue, J. A. Milbrandt, and A. Shapiro, 2015: Sensitivity of real-data simulations of the 3 May 1999 Oklahoma City tornadic supercell and associated tornadoes to multimoment microphysics. Part I: Storm- and tornado-scale numerical forecasts. Mon. Wea. Rev., 143, 22412265, doi:10.1175/MWR-D-14-00279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D., L. J. Wicker, and D. Stensrud, 2004: High resolution analyses of the 8 May 2003 Oklahoma City storm. Part II: EnKFData assimilation and forecast experiments. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 12.5, https://ams.confex.com/ams/11aram22sls/techprogram/paper_81393.htm.

  • Dowell, D., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294, doi:10.1175/2010MWR3438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, doi:10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, doi:10.1007/s10236-003-0036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and A. V. Ryzhkov, 2006: Validation of polarimetric hail detection. Wea. Forecasting, 21, 839850, doi:10.1175/WAF956.1.

  • Jewell, R., and J. Brimelow, 2009: Evaluation of Alberta hail growth model using severe hail proximity soundings from the United States. Wea. Forecasting, 24, 15921609, doi:10.1175/2009WAF2222230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, M., Y. Jung, D. T. I. Dawson, and M. Xue, 2016: Comparison of simulated polarimetric signatures in idealized supercell storms using two-moment bulk microphysics schemes in WRF. Mon. Wea. Rev., 144, 971996, doi:10.1175/MWR-D-15-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245, doi:10.1175/2007MWR2083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146163, doi:10.1175/2009JAMC2178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and M. Tong, 2012a: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, with verification against polarimetric radar data. Mon. Wea. Rev., 140, 14571475, doi:10.1175/MWR-D-11-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, Y. Wang, Y. Pan, and K. Zhu, 2012b: Tests of a cycled EnKF data assimilation and forecasts for the 10 May 2010 tornado outbreak in the central US domain. 25th Conf. on Severe and Local Storms, Nashville, TN, Amer. Meteor. Soc., 8A.4, https://ams.confex.com/ams/26SLS/webprogram/Paper211285.html.

  • Jung, Y., M. Xue, Y. Wang, Y. Pan, and K. Zhu, 2013: Multi-scale ensemble Kalman filter data assimilation and forecasts of the 10 May 2010 tornado outbreak in central United States. Sixth Conf. on Data Assimilation, College Park, MD, WMO, http://das6.umd.edu/program/Posters/uploads/Bp09-Jung_Youngsun.pdf.

  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, 341 pp.

    • Crossref
    • Export Citation
  • Kalnay, E., B. Hunt, E. Ott, and I. Szunyogh, 2006: Ensemble forecasting and data assimilation: Two problems with the same solution? Predictability of Weather and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University of Press, 157–180.

    • Crossref
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, T., M. Xue, and T. Yu, 2008: Multi-scale analysis and prediction of the 8 May 2003 Oklahoma City tornadic supercell storm assimilating radar and surface network data using EnKF. 13th Conf. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Phoenix, AZ, Amer. Meteor. Soc., 6.4, https://ams.confex.com/ams/89annual/techprogram/paper_150404.htm.

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307.

  • Luo, L., M. Xue, K. Zhu, and B. Zhou, 2017: Explicit prediction of hail using multi-moment microphysics schemes for a hailstorm of 19 March 2014 in eastern China. J. Geophys. Res. Atmos., 122, 75607581, doi:10.1002/2017JD026747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. Ziegler, and E. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, doi:10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817, doi:10.1175/2009BAMS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melick, C., I. L. Jirak, J. Correia, A. R. Dean, and S. J. Weiss, 2014: Exploration of the NSSL maximum expected size of hail (MESH) product for verifying experimental hail forecasts in the 2014 Spring Forecasting Experiment. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 76, https://ams.confex.com/ams/27SLS/webprogram/Paper254292.html.

  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, doi:10.1175/JAS3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2006a: A multimoment bulk microphysics parameterization. Part III: Control simulation. J. Atmos. Sci., 63, 31143136, doi:10.1175/JAS3816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2006b: A multimoment bulk microphysics parameterization. Part IV: Sensitivity experiments. J. Atmos. Sci., 63, 31373159, doi:10.1175/JAS3817.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and H. Morrison, 2013: Prediction of graupel density in a bulk microphysics scheme. J. Atmos. Sci., 70, 410429, doi:10.1175/JAS-D-12-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, doi:10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, I. Kyoko, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, doi:10.1175/JAS-D-14-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., T. M. Smith, K. L. Manross, K. A. Scharfenberg, W. Arthur, A. G. Kolodziej, and J. J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530, doi:10.1175/2009BAMS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., J. M. Krause, and A. V Ryzhkov, 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829848, https://dx.doi.org/10.1175/JAMC-D-15-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, R. D., and Coauthors, 2011: Observations of the 10 May 2010 tornado outbreak using OU-PRIME: Potential for new science with high-resolution polarimetric radar. Bull. Amer. Meteor. Soc., 92, 871891, doi:10.1175/2011BAMS3125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H. S., V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putnam, B. J., M. Xue, Y. Jung, N. Snook, and G. Zhang, 2014: The analysis and prediction of microphysical states and polarimetric radar variables in a mesoscale convective system using double-moment microphysics, multinetwork radar data, and the ensemble Kalman filter. Mon. Wea. Rev., 142, 141162, doi:10.1175/MWR-D-13-00042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N., and H. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, doi:10.1175/JAMC-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 33973418, doi:10.1175/MWR-D-16-0400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms. Geophys. Res. Lett., 35, L24803, doi:10.1029/2008GL035866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, doi:10.1175/2009WAF2222267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and Y. Jung, 2011: Analysis of a tornadic mesoscale convective vortex based on ensemble Kalman filter assimilation of CASA X-band and WSR-88D radar data. Mon. Wea. Rev., 139, 34463468, doi:10.1175/MWR-D-10-05053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and Y. Jung, 2015: Multiscale EnKF assimilation of radar and conventional observations and ensemble forecasting for a tornadic mesoscale convective system. Mon. Wea. Rev., 143, 10351058, doi:10.1175/MWR-D-13-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., Y. Jung, J. Brotzge, B. J. Putnam, and M. Xue, 2016: Prediction and ensemble forecast verification of hail in the supercell storms of 20 May 2013. Wea. Forecasting, 31, 811825, doi:10.1175/WAF-D-15-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, doi:10.1175//2555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, doi:10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W., and J. Simpson, 1993: Goddard cumulus ensemble model. Part 1: Model description. Terr. Atmos. Oceanic Sci., 4, 3572, doi:10.3319/TAO.1993.4.1.35(A).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807, doi:10.1175/MWR2898.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008a: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136, 16301648, doi:10.1175/2007MWR2070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008b: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part II: Parameter estimation experiments. Mon. Wea. Rev., 136, 16491668, doi:10.1175/2007MWR2070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VandenBerg, M. A., M. C. Coniglio, A. J. Clark, M. A. VandenBerg, M. C. Coniglio, and A. J. Clark, 2014: Comparison of next-day convection-allowing forecasts of storm motion on 1- and 4-km grids. Wea. Forecasting, 29, 878893, doi:10.1175/WAF-D-14-00011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, doi:10.1175/MWR-D-11-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, doi:10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyatt, A., and A. Witt, 1997: The effect of population density on ground-truth verification of reports used to score a hail detection algorithm. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 368–369.

  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, doi:10.1007/s007030070003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Predicition System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143165, doi:10.1007/s007030170027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Technol., 23, 4666, doi:10.1175/JTECH1835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., Y. Jung, and G. Zhang, 2010: State estimation of convective storms with a two-moment microphysics scheme and an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 136, 685700, doi:10.1002/qj.593.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and D. Stensrud, 2012: Comparison of single-parameter and multiparameter ensembles for assimilation of radar observations using the ensemble Kalman filter. Mon. Wea. Rev., 140, 562586, doi:10.1175/MWR-D-10-05074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. Wheatley, and D. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, doi:10.1175/MWR-D-12-00237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., J. S. Kain, A. J. Clark, N. Yussouf, J. S. Kain, and A. J. Clark, 2016: Short-term probabilistic forecasts of the 31 May 2013 Oklahoma tornado and flash flood event using a continuous-update-cycle storm-scale ensemble system. Wea. Forecasting, 31, 957983, doi:10.1175/WAF-D-15-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, doi:10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 484 114 13
PDF Downloads 474 129 5