Adaptive Kalman Filtering for Postprocessing Ensemble Numerical Weather Predictions

Anna Pelosi Department of Civil Engineering, University of Salerno, Fisciano (SA), Italy

Search for other papers by Anna Pelosi in
Current site
Google Scholar
PubMed
Close
,
Hanoi Medina Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama

Search for other papers by Hanoi Medina in
Current site
Google Scholar
PubMed
Close
,
Joris Van den Bergh Royal Meteorological Institute of Belgium, Brussels, Belgium

Search for other papers by Joris Van den Bergh in
Current site
Google Scholar
PubMed
Close
,
Stéphane Vannitsem Royal Meteorological Institute of Belgium, Brussels, Belgium

Search for other papers by Stéphane Vannitsem in
Current site
Google Scholar
PubMed
Close
, and
Giovanni Battista Chirico Department of Agricultural Sciences, Water Resources Management and Biosystems Engineering Division, University of Naples Federico II, Portici (NA), Italy

Search for other papers by Giovanni Battista Chirico in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Forecasts from numerical weather prediction models suffer from systematic and nonsystematic errors, which originate from various sources such as subgrid-scale variability affecting large scales. Statistical postprocessing techniques can partly remove such errors. Adaptive MOS techniques based on Kalman filters (here called AMOS), are used to sequentially postprocess the forecasts, by continuously updating the correction parameters as new ground observations become available. These techniques, originally proposed for deterministic forecasts, are valuable when long training datasets do not exist. Here, a new adaptive postprocessing technique for ensemble predictions (called AEMOS) is introduced. The proposed method implements a Kalman filtering approach that fully exploits the information content of the ensemble for updating the parameters of the postprocessing equation. A verification study for the region of Campania in southern Italy is performed. Two years (2014–15) of daily meteorological observations of 10-m wind speed and 2-m temperature from 18 ground-based automatic weather stations are used, comparing them with the corresponding COSMO-LEPS ensemble forecasts. It is shown that the proposed adaptive method outperforms the AMOS method, while it shows comparable results to the member-by-member batch postprocessing approach.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Giovanni Battista Chirico, gchirico@unina.it

Abstract

Forecasts from numerical weather prediction models suffer from systematic and nonsystematic errors, which originate from various sources such as subgrid-scale variability affecting large scales. Statistical postprocessing techniques can partly remove such errors. Adaptive MOS techniques based on Kalman filters (here called AMOS), are used to sequentially postprocess the forecasts, by continuously updating the correction parameters as new ground observations become available. These techniques, originally proposed for deterministic forecasts, are valuable when long training datasets do not exist. Here, a new adaptive postprocessing technique for ensemble predictions (called AEMOS) is introduced. The proposed method implements a Kalman filtering approach that fully exploits the information content of the ensemble for updating the parameters of the postprocessing equation. A verification study for the region of Campania in southern Italy is performed. Two years (2014–15) of daily meteorological observations of 10-m wind speed and 2-m temperature from 18 ground-based automatic weather stations are used, comparing them with the corresponding COSMO-LEPS ensemble forecasts. It is shown that the proposed adaptive method outperforms the AMOS method, while it shows comparable results to the member-by-member batch postprocessing approach.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Giovanni Battista Chirico, gchirico@unina.it
Save
  • Anderson, J. L., 1996: A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Climate, 9, 15181530, doi:10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, doi:10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buzzi, A., M. Fantini, P. Malguzzi, and F. Nerozzi, 1994: Validation of a limited area model in cases of Mediterranean cyclogenesis: Surface fields and precipitation scores. Meteor. Atmos. Phys., 53, 137153, doi:10.1007/BF01029609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassola, F., and M. Burlando, 2012: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output. Appl. Energy, 99, 154166, doi:10.1016/j.apenergy.2012.03.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y. Y., and W. J. Steenburgh, 2007: Strengths and weaknesses of MOS, running-mean bias removal, and Kalman filter techniques for improving model forecasts over the western United States. Wea. Forecasting, 22, 13041318, doi:10.1175/2007WAF2006084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chirico, G. B., H. Medina, and N. Romano, 2014: Kalman filters for assimilating near-surface observations in the Richards equation—Part 1: Retrieving state profiles with linear and nonlinear numerical schemes. Hydrol. Earth Syst. Sci., 18, 25032520, doi:10.5194/hess-18-2503-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crochet, P., 2004: Adaptive Kalman filtering of 2-metre temperature and 10-metre wind-speed forecasts in Iceland. Meteor. Appl., 11, 173187, doi:10.1017/S1350482704001252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., T. Nipen, X. Deng, Y. Zhou, and R. Stull, 2006: Ozone ensemble forecasts: 2. A Kalman filter predictor bias correction. J. Geophys. Res., 111, D05308, doi:10.1029/2005JD006311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., T. Nipen, Y. Liu, G. Roux, and R. Stull, 2011: Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Wea. Rev., 139, 35543570, doi:10.1175/2011MWR3653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 34983516, doi:10.1175/MWR-D-12-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2015: User guide to ECMWF forecast products v1.2. ECMWF, 129 pp., http://www.ecmwf.int/sites/default/files/User_Guide_V1.2_20151123.pdf.

  • Entekhabi, D., H. Nakamura, and E. G. Njoku, 1994: Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Trans. Geosci. Remote Sens., 32, 438448, doi:10.1109/36.295058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, doi:10.1007/s10236-003-0036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galanis, G., and M. Anadranistakis, 2002: A one-dimensional Kalman filter for the correction of near surface temperature forecasts. Meteor. Appl., 9, 437441, doi:10.1017/S1350482702004061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galanis, G., P. Louka, P. Katsafados, I. Pytharoulis, and G. Kallos, 2006: Applications of Kalman filters based on non-linear functions to numerical weather predictions. Ann. Geophys., 24, 24512460, doi:10.5194/angeo-24-2451-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galanis, G., G. Emmanouil, P. C. Chu, and G. Kallos, 2009: A new methodology for the extension of the impact of data assimilation on ocean wave prediction. Ocean Dyn., 59, 523535, doi:10.1007/s10236-009-0191-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galanis, G., I. Famelis, and A. Liakatas, 2016: A new Kalman filter based on Information Geometry techniques for optimizing numerical environmental simulations. Stochastic Environ. Res. Risk Assess., 31, 14231435, doi:10.1007/s00477-016-1332-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, doi:10.1175/MWR2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homleid, M., 1995: Diurnal corrections of short-term surface temperature forecasts using the Kalman filter. Wea. Forecasting, 10, 689707, doi:10.1175/1520-0434(1995)010<0689:DCOSTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. 1st ed. Mathematics in Science and Engineering Series, Vol. 64, Academic Press, 376 pp.

  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82, 3545, https://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., D. Ryu, A. W. Western, and Q. J. Wang, 2013: Assimilation of stream discharge for flood forecasting: The benefits of accounting for routing time lags. Water Resour. Res., 49, 18871900, doi:10.1002/wrcr.20169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., D. Ryu, A. W. Western, Q. J. Wang, D. E. Robertson, and W. T. Crow, 2014: An integrated error parameter estimation and lag-aware data assimilation scheme for real-time flood forecasting. J. Hydrol., 519, 27222736, doi:10.1016/j.jhydrol.2014.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Libonati, R., I. Trigo, and C. C. DaCamara, 2008: Correction of 2 m-temperature forecasts using Kalman filtering technique. Atmos. Res., 87, 183197, doi:10.1016/j.atmosres.2007.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louka, P., G. Galanis, N. Siebert, G. Kariniotakis, P. Katsafados, I. Pytharoulis, and G. Kallos, 2008: Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J. Wind Eng. Ind. Aerodyn., 96, 23482362, doi:10.1016/j.jweia.2008.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollor, D., and R. Stull, 2008: Hydrometeorological accuracy enhancement via postprocessing of numerical weather forecasts in complex terrain. Wea. Forecasting, 23, 131144, doi:10.1175/2007WAF2006107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, H., N. Romano, and G. B. Chirico, 2014: Kalman filters for assimilating near-surface observations into the Richards equation—Part 2: A dual filter approach for simultaneous retrieval of states and parameters. Hydrol. Earth Syst. Sci., 18, 25212541, doi:10.5194/hess-18-2521-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montani, A., D. Cesari, C. Marsigli, and T. Paccagnella, 2011: Seven years of activity in the field of mesoscale ensemble forecasting by the COSMO-LEPS system: Main achievements and open challenges. Tellus, 63A, 605624, doi:10.1111/j.1600-0870.2010.00499.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolis, C., R. A. P. Perdigao, and S. Vannitsem, 2009: Dynamics of prediction errors under the combined effect of initial condition and model errors. J. Atmos. Sci., 66, 766778, doi:10.1175/2008JAS2781.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, doi:10.5194/hess-11-1633-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelosi, A., and P. Furcolo, 2015: An amplification model for the regional estimation of extreme rainfall within orographic areas in Campania region (Italy). Water, 7, 68776891, doi:10.3390/w7126664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelosi, A., H. Medina, P. Villani, G. D’Urso, and G. B. Chirico, 2016: Probabilistic forecasting of reference evapotranspiration with a limited area ensemble prediction system. Agric. Water Manage., 178, 106118, doi:10.1016/j.agwat.2016.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perera, K. C., A. W. Western, B. Nawarathna, and B. George, 2014: Forecasting daily reference evapotranspiration for Australia using numerical weather prediction outputs. Agric. For. Meteor., 194, 5063, doi:10.1016/j.agrformet.2014.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, A., 1991: Kalman filtering—A new approach to adaptive statistical interpretation of numerical meteorological forecasts. Lectures and Papers Presented at the WMO Training Workshop on the Interpretation of NWP Products in Terms of Local Weather Phenomena and Their Verification, H. R. Glahn, Ed., PSMP Report Series, Vol. 34, World Meteorological Organization, 27–32 .

  • Persson, A., and B. Strauss, 1995: On the skill and consistency in medium-range weather forecasts. ECMWF Newsletter, No. 70, ECMWF, Reading, United Kingdom, 1215.

    • Search Google Scholar
    • Export Citation
  • Pinson, P., 2012: Adaptive calibration of (u,v)-wind ensemble forecasts. Quart. J. Roy. Meteor. Soc., 138, 12731284, doi:10.1002/qj.1873.

  • Ridler, M.-E., H. Madsen, S. Stisen, S. Bircher, and R. Fensholt, 2014: Assimilation of SMOS-derived soil moisture in a fully integrated hydrological and soil-vegetation-atmosphere transfer model in Western Denmark. Water Resour. Res., 50, 89628981, doi:10.1002/2014WR015392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeger, C., R. Stull, D. McClung, J. Hacker, X. Deng, and H. Modzelewski, 2003: Verification of mesoscale numerical weather forecasts in mountainous terrain for application to avalanche prediction. Wea. Forecasting, 18, 11401160, doi:10.1175/1520-0434(2003)018<1140:VOMNWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schefzik, R., 2017: Ensemble calibration with preserved correlations: Unifying and comparing ensemble copula coupling and member-by-member postprocessing. Quart. J. Roy. Meteor. Soc., 143, 9991008, doi:10.1002/qj.2984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonsen, C., 1991: Self adaptive model output statistics based on Kalman filtering. Lectures and Papers Presented at the WMO Training Workshop on the Interpretation of NWP Products in Terms of Local Weather Phenomena and Their Verification, H. R. Glahn, Ed., PSMP Report Series, Vol. 34, World Meteorological Organization, 33–37.

  • Sivillo, J., J. Ahlquist, and Z. Toth, 1997: An ensemble forecasting primer. Wea. Forecasting, 12, 809818, doi:10.1175/1520-0434(1997)012<0809:AEFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stathopoulos, C., A. Kaperoni, G. Galanis, and G. Kallos, 2013: Wind power prediction based on numerical and statistical models. J. Wind Eng. Ind. Aerodyn., 112, 2538, doi:10.1016/j.jweia.2012.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S. L., 2004: Multi-sensor optimal information fusion Kalman filter with application. Aerosp. Sci. Technol., 8, 5762, doi:10.1016/j.ast.2003.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., 2008: Dynamical properties of MOS forecasts: Analysis of the ECMWF operational forecasting system. Wea. Forecasting, 23, 10321043, doi:10.1175/2008WAF2222126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and C. Nicolis, 2008: Dynamical properties of model output statistics forecasts. Mon. Wea. Rev., 136, 405419, doi:10.1175/2007MWR2104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Schaeybroeck, B., and S. Vannitsem, 2015: Ensemble post-processing using member-by-member approaches: Theoretical aspects. Quart. J. Roy. Meteor. Soc., 141, 807818, doi:10.1002/qj.2397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, E., and A. Nelson, 2001: Dual extended Kalman filter methods. Kalman Filtering and Neural Networks, S. Haykin, Ed., John Wiley & Sons, 123–174.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

    • Search Google Scholar
    • Export Citation
  • Willner, D., C. B. Chang, and K. P. Dunn, 1976: Kalman filter algorithm for a multisensor system. Proc. IEEE Conf. on Decision and Control, Clearwater, FL, Institute of Electrical and Electronics Engineers, 570574.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1053 340 38
PDF Downloads 998 213 22