Assimilation of ZDR Columns for Improving the Spinup and Forecast of Convective Storms in Storm-Scale Models: Proof-of-Concept Experiments

Jacob T. Carlin School of Meteorology, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jacob T. Carlin in
Current site
Google Scholar
PubMed
Close
,
Jidong Gao NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jidong Gao in
Current site
Google Scholar
PubMed
Close
,
Jeffrey C. Snyder Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jeffrey C. Snyder in
Current site
Google Scholar
PubMed
Close
, and
Alexander V. Ryzhkov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexander V. Ryzhkov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Achieving accurate storm-scale analyses and reducing the spinup time of modeled convection is a primary motivation for the assimilation of radar reflectivity data. One common technique of reflectivity data assimilation is using a cloud analysis, which inserts temperature and moisture increments and hydrometeors deduced from radar reflectivity via empirical relations to induce and sustain updraft circulations. Polarimetric radar data have the ability to provide enhanced insight into the microphysical and dynamic structure of convection. Thus far, however, relatively little has been done to leverage these data for numerical weather prediction. In this study, the Advanced Regional Prediction System’s cloud analysis is modified from its original reflectivity-based formulation to provide moisture and latent heat adjustments based on the detection of differential reflectivity columns, which can serve as proxies for updrafts in deep moist convection and, subsequently, areas of saturation and latent heat release. Cycled model runs using both the original cloud analysis and above modifications are performed for two high-impact weather cases: the 19 May 2013 central Oklahoma tornadic supercells and the 25 May 2016 north-central Kansas tornadic supercell. The analyses and forecasts of convection qualitatively and quantitatively improve in both cases, including more coherent analyzed updrafts, more realistic forecast reflectivity structures, a better correspondence between forecast updraft helicity tracks and radar-derived rotation tracks, and improved frequency biases and equitable threat scores for reflectivity. Based on these encouraging results, further exploration of the assimilation of dual-polarization radar data into storm-scale models is warranted.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jacob T. Carlin, jacob.carlin@noaa.gov

Abstract

Achieving accurate storm-scale analyses and reducing the spinup time of modeled convection is a primary motivation for the assimilation of radar reflectivity data. One common technique of reflectivity data assimilation is using a cloud analysis, which inserts temperature and moisture increments and hydrometeors deduced from radar reflectivity via empirical relations to induce and sustain updraft circulations. Polarimetric radar data have the ability to provide enhanced insight into the microphysical and dynamic structure of convection. Thus far, however, relatively little has been done to leverage these data for numerical weather prediction. In this study, the Advanced Regional Prediction System’s cloud analysis is modified from its original reflectivity-based formulation to provide moisture and latent heat adjustments based on the detection of differential reflectivity columns, which can serve as proxies for updrafts in deep moist convection and, subsequently, areas of saturation and latent heat release. Cycled model runs using both the original cloud analysis and above modifications are performed for two high-impact weather cases: the 19 May 2013 central Oklahoma tornadic supercells and the 25 May 2016 north-central Kansas tornadic supercell. The analyses and forecasts of convection qualitatively and quantitatively improve in both cases, including more coherent analyzed updrafts, more realistic forecast reflectivity structures, a better correspondence between forecast updraft helicity tracks and radar-derived rotation tracks, and improved frequency biases and equitable threat scores for reflectivity. Based on these encouraging results, further exploration of the assimilation of dual-polarization radar data into storm-scale models is warranted.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jacob T. Carlin, jacob.carlin@noaa.gov
Save
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824, https://doi.org/10.1175/2008MWR2691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albers, S. C., J. A. McGinley, D. L. Birkenheuer, and J. R. Smart, 1996: The Local Analysis and Prediction System (LAPS): Analyses of clouds, precipitation, and temperature. Wea. Forecasting, 11, 273287, https://doi.org/10.1175/1520-0434(1996)011<0273:TLAAPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., M. R. Kumjian, R. D. Palmer, P. L. Heinselman, and A. V. Ryzhkov, 2013: Tornado damage estimation using polarimetric radar. Wea. Forecasting, 28, 139158, https://doi.org/10.1175/WAF-D-11-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., R. D. Palmer, and G. Zhang, 2014: Dual-wavelength polarimetric radar analyses of tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 242261, https://doi.org/10.1175/JAMC-D-13-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewster, K. A., 2002: Recent advances in the diabatic initialization of a non-hydrostatic numerical model. 19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction/21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., J6.3, https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47414.htm.

  • Brewster, K. A., and D. R. Stratman, 2015: An updated high resolution hydrometeor analysis system using radar and other data. 27th Conf. on Weather Analysis and Forecasting/23rd Conf. on Numerical Weather Prediction, Chicago, IL, Amer. Meteor. Soc., 31, https://ams.confex.com/ams/27WAF23NWP/webprogram/Paper273811.html.

  • Brewster, K. A., M. Hu, M. Xue, and J. Gao, 2005: Efficient assimilation of radar data at high resolution for short range numerical weather prediction. World Weather Research Program Symp. and Nowcasting and Very Short-Range Forecasting WSN05, Toulouse, France, WMO World Weather Research Program, 3.06, http://twister.ou.edu/papers/BrewsterWWRP_Nowcasting.pdf.

  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840, https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, https://doi.org/10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlin, J. T., A. V. Ryzhkov, J. C. Snyder, and A. Khain, 2016: Hydrometeor mixing ratio retrievals for storm-scale radar data assimilation: Utility of current relations and potential benefits of polarimetry. Mon. Wea. Rev., 144, 29813001, https://doi.org/10.1175/MWR-D-15-0423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caumont, O., V. Ducrocq, É. Wattrelot, G. Jaubert, and S. Pradier-Vabre, 2010: 1D+3DVar assimilation of radar reflectivity data: A proof of concept. Tellus, 62A, 173187, https://doi.org/10.1111/j.1600-0870.2009.00430.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, S.-F., Y.-C. Liou, J. Sun, and S.-L. Tai, 2016: The implementation of the ice phase microphysical process into a four-dimensional Variational Doppler Radar Analysis System (VDRAS) and its impact on parameter retrieval and quantitative precipitation nowcasting. J. Atmos. Sci., 73, 10151038, https://doi.org/10.1175/JAS-D-15-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., 1990: Parameterizations for the absorption of solar radiation by O2 and CO2 with application to climate studies. J. Climate, 3, 209217, https://doi.org/10.1175/1520-0442(1990)003<0209:PFTAOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49, 762772, https://doi.org/10.1175/1520-0469(1992)049<0762:ASRMFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davolio, S., and A. Buzzi, 2004: A nudging scheme for the assimilation of precipitation data into a mesoscale model. Wea. Forecasting, 19, 855871, https://doi.org/10.1175/1520-0434(2004)019<0855:ANSFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., and M. Xue, 2006: Numerical forecasts of the 15–16 June 2002 southern plains mesoscale convective system: Impact of mesoscale data and cloud analysis. Mon. Wea. Rev., 134, 16071629, https://doi.org/10.1175/MWR3141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., L. J. Wicker, E. R. Mansell, Y. Jung, and M. Xue, 2013: Low-level polarimetric radar signatures in EnKF analyses and forecasts of the May 8, 2003 Oklahoma City tornadic supercell: Impact of multimoment microphysics and comparisons with observation. Adv. Meteor., 2013, 818394, https://doi.org/10.1155/2013/818394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, Y. Jung, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting hail. J. Atmos. Sci., 71, 276299, https://doi.org/10.1175/JAS-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., M. Xue, J. A. Milbrandt, and A. Shapiro, 2015: Sensitivity of real-data simulations of the 3 May 1999 Oklahoma City tornadic supercell and associated tornadoes to multimoment microphysics. Part I: Storm- and tornado-scale numerical forecasts. Mon. Wea. Rev., 143, 22412265, https://doi.org/10.1175/MWR-D-14-00279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, https://doi.org/10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294, https://doi.org/10.1175/2010MWR3438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, C. L. Ziegler, and D. R. MacGorman, 2012: Application of a lightning data assimilation technique in the WRF-ARW model at cloud-resolving scales for the tornado outbreak of 24 May 2011. Mon. Wea. Rev., 140, 26092627, https://doi.org/10.1175/MWR-D-11-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., J. Gao, C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and S. R. Dembek, 2014: Evaluation of a cloud-scale lightning data assimilation technique and a 3DVAR method for the analysis and short-term forecast of the 29 June 2012 derecho event. Mon. Wea. Rev., 142, 183202, https://doi.org/10.1175/MWR-D-13-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., A. Clark, E. R. Mansell, D. R. MacGorman, S. R. Dembek, and C. L. Ziegler, 2015: Impact of storm-scale lightning data assimilation on WRF-ARW precipitation forecasts during the 2013 warm season over the contiguous United States. Mon. Wea. Rev., 143, 757777, https://doi.org/10.1175/MWR-D-14-00183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., J. Gao, C. L. Ziegler, K. M. Calhoun, E. R. Mansell, and D. R. MacGorman, 2016: Assimilation of flash extent data in the variational framework at convection-allowing scales: Proof-of-concept and evaluation for the short-term forecast of the 24 May 2011 tornado outbreak. Mon. Wea. Rev., 144, 43734393, https://doi.org/10.1175/MWR-D-16-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. J. Stensrud, 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 10541065, https://doi.org/10.1175/JAS-D-11-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. J. Stensrud, 2014: Some observing system simulation experiments with a hybrid 3DEnVAR system for storm-scale radar data assimilation. Mon. Wea. Rev., 142, 33263346, https://doi.org/10.1175/MWR-D-14-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469, https://doi.org/10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., G. Ge, D. J. Stensrud, and M. Xue, 2009: The relative importance of assimilating radial velocity and reflectivity data. 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 8A.1, https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154286.htm.

  • Gao, J., M. Xue, and D. J. Stensrud, 2013: The development of a hybrid EnKF-3DVAR algorithm for storm-scale data assimilation. Adv. Meteor., 2013, 512656, https://doi.org/10.1155/2013/512656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., D. J. Stensrud, L. Wicker, M. Xue, and K. Zhao, 2014: Storm-scale radar data assimilation and high resolution NWP. Adv. Meteor., 2014, 213579, https://doi.org/10.1155/2014/213579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., C. Fu, D. J. Stensrud, and J. S. Kain, 2016: OSSEs for an ensemble 3DVAR data assimilation system with radar observations of convective storms. J. Atmos. Sci., 73, 24032426, https://doi.org/10.1175/JAS-D-15-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, G., J. Gao, and M. Xue, 2013: Impacts of assimilating measurements of different state variables with a simulated supercell storm and three-dimensional variational method. Mon. Wea. Rev., 141, 27592777, https://doi.org/10.1175/MWR-D-12-00193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilbert, G. K., 1884: Finley’s tornado predictions. Amer. Meteor. J., 1, 166172.

  • Haines, P. A., J. K. Luers, and C. A. Cerbus, 1989: The role of the Smith–Feddes model in improving the forecasting of aircraft icing. Third Conf. on the Aviation Weather System, Anaheim, CA, Amer. Meteor. Soc., 258–263.

  • Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140, https://doi.org/10.1029/RS019i001p00132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and A. V. Ryzhkov, 2006: Validation of polarimetric hail detection. Wea. Forecasting, 21, 839850, https://doi.org/10.1175/WAF956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., 2014: Formation of the enhanced-V infrared cloud-top feature from high-resolution three-dimensional radar observations. J. Atmos. Sci., 71, 332348, https://doi.org/10.1175/JAS-D-13-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and M. R. Kumjian, 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, https://doi.org/10.1175/JAS-D-13-0388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., and M. Xue, 2007: Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case. Mon. Wea. Rev., 135, 507525, https://doi.org/10.1175/MWR3313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006a: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698, https://doi.org/10.1175/MWR3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, J. Gao, and K. Brewster, 2006b: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699721, https://doi.org/10.1175/MWR3093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469489, https://doi.org/10.1002/qj.49711347604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, M., Y. Jung, D. Dawson, and M. Xue, 2016: Comparison of simulated polarimetric signatures in idealized supercell storms using two-moment bulk microphysics schemes in WRF. Mon. Wea. Rev., 144, 971996, https://doi.org/10.1175/MWR-D-15-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and B. Macpherson, 1997: A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model. Meteor. Appl., 4, 269277, https://doi.org/10.1017/S1350482797000522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245, https://doi.org/10.1175/2007MWR2083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., G. Zhang, M. Xue, and J. M. Straka, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 22462260, https://doi.org/10.1175/2007MWR2288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010a: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146163, https://doi.org/10.1175/2009JAMC2178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010b: Simultaneous estimation of microphysical parameters and the atmospheric state using simulated polarimetric radar data and an ensemble Kalman filter in the presence of an observation operator error. Mon. Wea. Rev., 138, 539562, https://doi.org/10.1175/2009MWR2748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and M. Tong, 2012: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, with verification against polarimetric radar data. Mon. Wea. Rev., 140, 14571475, https://doi.org/10.1175/MWR-D-11-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, https://doi.org/10.1175/JAS-3350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., 2006: Very early formation of big, liquid drops revealed by ZDR in continental cumulus. J. Atmos. Sci., 63, 19391953, https://doi.org/10.1175/JAS3721.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., A. Aksakal, and J. T. McQueen, 1997: The influence of mesoscale humidity and evapotranspiration fields on a model forecast of a cold-frontal squall line. Mon. Wea. Rev., 125, 384409, https://doi.org/10.1175/1520-0493(1997)125<0384:TIOMHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korsholm, U., C. Petersen, B. H. Sass, N. W. Nielsen, D. G. Jensen, B. T. Olsen, R. Gill, and H. Vedel, 2015: A new approach for assimilation of 2D radar precipitation in a high-resolution NWP model. Meteor. Appl., 22, 4859, https://doi.org/10.1002/met.1466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. J. Oper. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265