Combined Assimilation of Satellite Precipitation and Soil Moisture: A Case Study Using TRMM and SMOS Data

Liao-Fan Lin School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Liao-Fan Lin in
Current site
Google Scholar
PubMed
Close
,
Ardeshir M. Ebtehaj Saint Anthony Falls Laboratory, Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota

Search for other papers by Ardeshir M. Ebtehaj in
Current site
Google Scholar
PubMed
Close
,
Alejandro N. Flores Department of Geosciences, Boise State University, Boise, Idaho

Search for other papers by Alejandro N. Flores in
Current site
Google Scholar
PubMed
Close
,
Satish Bastola School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Satish Bastola in
Current site
Google Scholar
PubMed
Close
, and
Rafael L. Bras School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Rafael L. Bras in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents a framework that enables simultaneous assimilation of satellite precipitation and soil moisture observations into the coupled Weather Research and Forecasting (WRF) and Noah land surface model through variational approaches. The authors tested the framework by assimilating precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and soil moisture data from the Soil Moisture Ocean Salinity (SMOS) satellite. The results show that assimilation of both TRMM and SMOS data can effectively improve the forecast skills of precipitation, top 10-cm soil moisture, and 2-m temperature and specific humidity. Within a 2-day time window, impacts of precipitation data assimilation on the forecasts remain relatively constant for forecast lead times greater than 6 h, while the influence of soil moisture data assimilation increases with lead time. The study also demonstrates that the forecast skill of precipitation, soil moisture, and near-surface temperature and humidity are further improved when both the TRMM and SMOS data are assimilated. In particular, the combined data assimilation reduces the prediction biases and root-mean-square errors, respectively, by 57% and 6% (for precipitation); 73% and 27% (for soil moisture); 17% and 9% (for 2-m temperature); and 33% and 11% (for 2-m specific humidity).

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liao-Fan Lin, liaofan.lin@gatech.edu

This article is included in the Global Precipitation Measurement (GPM) special collection.

Abstract

This paper presents a framework that enables simultaneous assimilation of satellite precipitation and soil moisture observations into the coupled Weather Research and Forecasting (WRF) and Noah land surface model through variational approaches. The authors tested the framework by assimilating precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and soil moisture data from the Soil Moisture Ocean Salinity (SMOS) satellite. The results show that assimilation of both TRMM and SMOS data can effectively improve the forecast skills of precipitation, top 10-cm soil moisture, and 2-m temperature and specific humidity. Within a 2-day time window, impacts of precipitation data assimilation on the forecasts remain relatively constant for forecast lead times greater than 6 h, while the influence of soil moisture data assimilation increases with lead time. The study also demonstrates that the forecast skill of precipitation, soil moisture, and near-surface temperature and humidity are further improved when both the TRMM and SMOS data are assimilated. In particular, the combined data assimilation reduces the prediction biases and root-mean-square errors, respectively, by 57% and 6% (for precipitation); 73% and 27% (for soil moisture); 17% and 9% (for 2-m temperature); and 33% and 11% (for 2-m specific humidity).

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liao-Fan Lin, liaofan.lin@gatech.edu

This article is included in the Global Precipitation Measurement (GPM) special collection.

Save
  • Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., G. Ohring, C. Kummerow, and T. Auligné, 2011: Assimilating satellite observations of clouds and precipitation into NWP models. Bull. Amer. Meteor. Soc., 92 (Suppl.), ES25ES28, https://doi.org/10.1175/2011BAMS3182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blankenship, C. B., J. L. Case, B. T. Zavodsky, and W. L. Crosson, 2016: Assimilation of SMOS retrievals in the Land Information System. IEEE Trans. Geosci. Remote Sens., 54, 63206332, https://doi.org/10.1109/TGRS.2016.2579604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Case, J. L., S. V. Kumar, J. Srikishen, and G. J. Jedlovec, 2011: Improving numerical weather predictions of summertime precipitation over the southeastern United States through a high-resolution initialization of the surface state. Wea. Forecasting, 26, 785807, https://doi.org/10.1175/2011WAF2222455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. K., and Coauthors, 2016: Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens., 54, 49945007, https://doi.org/10.1109/TGRS.2016.2561938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J., and F. Bouttier, 1999: A reformulation of the background error covariance in the ECMWF global data assimilation system. Tellus, 51A, 195221, https://doi.org/10.3402/tellusa.v51i2.12316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 485498, https://doi.org/10.1175/BAMS-D-12-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C. S., J.-F. Mahfouf, and J. P. Walker, 2009: An EKF assimilation of AMSR-E soil moisture into the ISBA land surface scheme. J. Geophys. Res., 114, D20104, https://doi.org/10.1029/2008JD011650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C. S., J.-F. Mahfouf, J.-C. Calvet, E. Martin, and W. Wagner, 2011a: Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France. Hydrol. Earth Syst. Sci., 15, 38293841, https://doi.org/10.5194/hess-15-3829-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C. S., J.-F. Mahfouf, and J. P. Walker, 2011b: Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture. J. Geophys. Res., 116, D02127, https://doi.org/10.1029/2010JD013829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, S., and D. Entekhabi, 2006: Land surface state and flux estimation using the ensemble Kalman smoother during the Southern Great Plains 1997 field experiment. Water Resour. Res., 42, W01407, https://doi.org/10.1029/2005WR004334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., G. Ohring, F. Weng, P. Bauer, B. Ferrier, J.-F. Mahfouf, and J. Turk, 2007: Assimilation of satellite cloud and precipitation observations in numerical weather prediction models: Introduction to the JAS special collection. J. Atmos. Sci., 64, 37373741, https://doi.org/10.1175/2007JAS2622.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., and P. Houser, 2015: Quantifying the strength of land–atmosphere coupling in the 2004 North American monsoon. Atmos. Sci. Lett., 16, 391397, https://doi.org/10.1002/asl2.573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flores, A. N., R. L. Bras, and D. Entekhabi, 2012: Hydrologic data assimilation with a hillslope-scale-resolving model and L band radar observations: Synthetic experiments with the ensemble Kalman filter. Water Resour. Res., 48, W08509, https://doi.org/10.1029/2011WR011500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flores, A. N., D. Entekhabi, and R. L. Bras, 2014: Application of a hillslope-scale soil moisture data assimilation system to military trafficability assessment. J. Terramech., 51, 5366, https://doi.org/10.1016/j.jterra.2013.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geer, A. J., P. Bauer, and P. Lopez, 2008: Lessons learnt from the operational 1D + 4D-Var assimilation of rain- and cloud-affected SSM/I observations at ECMWF. Quart. J. Roy. Meteor. Soc., 134, 15131525, https://doi.org/10.1002/qj.304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-class Microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151, http://www2.mmm.ucar.edu/wrf/users/phys_refs/MICRO_PHYS/WSM6.pdf.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., D. V. Ledvina, A. M. da Silva, S. Q. Zhang, J. Joiner, R. M. Atlas, G. J. Huffman, and C. D. Kummerow, 2000a: Assimilation of SSM/I-derived surface rainfall and total precipitable water for improving the GEOS analysis for climate studies. Mon. Wea. Rev., 128, 509537, https://doi.org/10.1175/1520-0493(2000)128<0509:AOSIDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., S. Q. Zhang, A. M. da Silva, and W. S. Olson, 2000b: Improving assimilated global datasets using TMI rainfall and columnar moisture observations. J. Climate, 13, 41804195, https://doi.org/10.1175/1520-0442(2000)013<4180:IAGDUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., S. Q. Zhang, A. M. da Silva, W. S. Olson, C. D. Kummerow, and J. Simpson, 2001: Improving global analysis and short-range forecast using rainfall and moisture observations derived from TRMM and SSM/I passive microwave sensors. Bull. Amer. Meteor. Soc., 82, 659679, https://doi.org/10.1175/1520-0477(2001)082<0659:IGAASF>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., S. Q. Zhang, and O. Reale, 2004: Variational continuous assimilation of TMI and SSM/I rain rates: Impact on GEOS-3 hurricane analyses and forecasts. Mon. Wea. Rev., 132, 20942109, https://doi.org/10.1175/1520-0493(2004)132<2094:VCAOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X.-Y., and Coauthors, 2009: Four-dimensional variational data assimilation for WRF: Formula and preliminary results. Mon. Wea. Rev., 137, 299314, https://doi.org/10.1175/2008MWR2577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. V.-G. de Arellano, J. Navarro, and J. F. González-Rouco, 2014: Understanding land–atmosphere interactions across a range of spatial and temporal scales. Bull. Amer. Meteor. Soc., 95 (Suppl.), ES14ES17, https://doi.org/10.1175/BAMS-D-13-00029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2010: The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE, 98, 666687, https://doi.org/10.1109/JPROC.2010.2043032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koizumi, K., Y. Ishikawa, and T. Tsuyuki, 2005: Assimilation of precipitation data to the JMA mesoscale model with a four-dimensional variational method and its impact on precipitation forecasts. SOLA, 1, 4548, https://doi.org/10.2151/sola.2005-013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, https://doi.org/10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., C. M. Kishtawal, and P. K. Pal, 2014: Impact of satellite rainfall assimilation on Weather Research and Forecasting Model predictions over the Indian region. J. Geophys. Res. Atmos., 119, 20172031, https://doi.org/10.1002/2013JD020005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2014: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J. Hydrometeor., 15, 24462469, https://doi.org/10.1175/JHM-D-13-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, G.-Y., T. Miyoshi, and E. Kalnay, 2016: Assimilation of TRMM Multisatellite Precipitation Analysis with a low-resolution NCEP Global Forecasting System. Mon. Wea. Rev., 144, 643661, https://doi.org/10.1175/MWR-D-15-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L.-F., 2016: Data assimilation and dynamical downscaling of remotely-sensed precipitation and soil moisture from space. Ph.D. thesis, Georgia Institute of Technology, 183 pp., https://smartech.gatech.edu/handle/1853/54974.

  • Lin, L.-F., A. M. Ebtehaj, R. L. Bras, A. N. Flores, and J. Wang, 2015: Dynamical precipitation downscaling for hydrologic applications using WRF 4D-Var data assimilation: Implications for GPM era. J. Hydrometeor., 16, 811829, https://doi.org/10.1175/JHM-D-14-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L.-F., A. M. Ebtehaj, J. Wang, and R. L. Bras, 2017: Soil moisture background error covariance and data assimilation in a coupled land–atmosphere model. Water Resour. Res., 53, 13091335, https://doi.org/10.1002/2015WR017548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., S. Q. Zhang, and A. Y. Hou, 2007: Variational assimilation of global microwave rainfall retrievals: Physical and dynamical impact on GEOS analyses. Mon. Wea. Rev., 135, 29312957, https://doi.org/10.1175/MWR3434.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/pdfpapers/83847.pdf.

  • Liu, Q., and Coauthors, 2011: The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates in a land data assimilation system. J. Hydrometeor., 12, 750765, https://doi.org/10.1175/JHM-D-10-05000.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2007: Cloud and precipitation parameterizations in modeling and variational data assimilation: A review. J. Atmos. Sci., 64, 37663784, https://doi.org/10.1175/2006JAS2030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2011: Direct 4D-Var assimilation of NCEP Stage IV radar and gauge precipitation data at ECMWF. Mon. Wea. Rev., 139, 20982116, https://doi.org/10.1175/2010MWR3565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2013: Experimental 4D-Var assimilation of SYNOP rain gauge data at ECMWF. Mon. Wea. Rev., 141, 15271544, https://doi.org/10.1175/MWR-D-12-00024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, P., and P. Bauer, 2007: “1D+4DVAR” assimilation of NCEP Stage-IV radar and gauge hourly precipitation data at ECMWF. Mon. Wea. Rev., 135, 25062524, https://doi.org/10.1175/MWR3409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., 2010: Assimilation of satellite-derived soil moisture from ASCAT in a limited-area NWP model. Quart. J. Roy. Meteor. Soc., 136, 784798, https://doi.org/10.1002/qj.602.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., K. Bergaoui, C. Draper, F. Bouyssel, F. Taillefer, and L. Taseva, 2009: A comparison of two off-line soil analysis schemes for assimilation of screen level observations. J. Geophys. Res., 114, D08105, https://doi.org/10.1029/2008JD011077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E., S. Taubman, P. Brown, M. Iacono, and S. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/National Centers for Environmental Prediction, 2000: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999 (updated daily). National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 21 August 2016, https://doi.org/10.5065/D6M043C6.

    • Crossref
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., S. V. Kumar, D. M. Mocko, and Y. Tian, 2011: Estimating evapotranspiration with land data assimilation systems. Hydrol. Processes, 25, 39793992, https://doi.org/10.1002/hyp.8387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., W.-K. Tao, S. Braun, J. Simpson, Y. Jia, J. Halverson, W. Olson, and A. Hou, 2002: The impact of TRMM data on mesocale numerical simulation of Supertyphoon Paka. Mon. Wea. Rev., 130, 24482458, https://doi.org/10.1175/1520-0493(2002)130<2448:TIOTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmy, M., T. Koike, S. Boussetta, H. Lu, and X. Li, 2011: Development of a satellite Land Data Assimilation System coupled with a mesocale model in the Tibetan Plateau. IEEE Trans. Geosci. Remote Sens., 49, 28472862, https://doi.org/10.1109/TGRS.2011.2112667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmy, M., T. Koike, D. Kuria, C. R. Mirza, X. Li, and K. Yang, 2012: Development of the Coupled Atmosphere and Land Data Assimilation System (CALDAS) and its application over the Tibetan Plateau. IEEE Trans. Geosci. Remote Sens., 50, 42274242, https://doi.org/10.1109/TGRS.2012.2190517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and R. D. Koster, 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 31, L19501, https://doi.org/10.1029/2004GL020938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and R. D. Koster, 2005: Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model. Geophys. Res. Lett., 32, L02404, https://doi.org/10.1029/2004GL021700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, P. Liu, S. P. P. Mahanama, E. G. Njoku, and M. Owe, 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112, D09108, https://doi.org/10.1029/2006JD008033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., M. H. Cosh, and T. J. Jackson, 2007: The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, https://doi.org/10.1175/2007JTECHA930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, S., Y. Wang, W. Wagner, and J.-F. Mahfouf, 2014: Impact of ASCAT soil moisture assimilation on regional precipitation forecasts: A case study for Austria. Mon. Wea. Rev., 142, 15251541, https://doi.org/10.1175/MWR-D-12-00311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, H., and Coauthors, 2016: Bridging research to operations transitions: Status and plans of community GSI. Bull. Amer. Meteor. Soc., 97, 14271440, https://doi.org/10.1175/BAMS-D-13-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Wang, H., J. Sun, X. Zhang, X.-Y. Huang, and T. Auligné, 2013: Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 22242244, https://doi.org/10.1175/MWR-D-12-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Yin, J., X. Zhan, Y. Zheng, J. Liu, C. R. Hain, and L. Fang, 2014: Impact of quality control of satellite soil moisture data on their assimilation into land surface model. Geophys. Res. Lett., 41, 71597166, https://doi.org/10.1002/2014GL060659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., Z.-L. Yang, and T. J. Hoar, 2016: Global soil moisture estimation by assimilating AMSR-E brightness temperatures in a coupled CLM4–RTM–DART system. J. Hydrometeor., 17, 24312454, https://doi.org/10.1175/JHM-D-15-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1526 979 126
PDF Downloads 569 94 8