Influence of Storm–Storm and Storm–Environment Interactions on Tropical Cyclone Formation and Evolution

James P. Fowler Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by James P. Fowler in
Current site
Google Scholar
PubMed
Close
and
Thomas J. Galarneau Jr. Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Thomas J. Galarneau Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The aim of this study is to examine the development of four tropical cyclones (TCs) in the North Atlantic basin in late August and early September 2010. This period is of interest because four consecutive easterly waves emerged from West Africa and resulted in a multiple TC event (MTCE) over the North Atlantic. The first two TCs—Danielle and Earl—quickly developed into TCs east of 40°W and eventually intensified into major hurricanes. Conversely, the last two TCs—Fiona and Gaston—developed more slowly reaching only weak tropical storm intensity at their peak. The close proximity and differing evolution of these four TCs provides a unique opportunity to examine how these TCs interacted with each other and their surrounding environment, which influenced their development as they moved westward across the North Atlantic. The results showed that concurrent extratropical cyclogenesis events over the western and eastern North Atlantic and the recurvature of TC Danielle produced increased meridional flow over the midlatitude North Atlantic. This increased meridional flow resulted in subsynoptic-scale regions of increased vertical wind shear in the subtropics, which delayed Earl’s development and led to Fiona’s demise. Additionally, increased meridional flow in midlatitudes contributed to anomalous drying of the subtropics. This dry air was entrained into Gaston’s circulation leading to reduced convection and weakening. These TC–TC and TC–environment interactions highlight the difficult challenge of forecasting TC genesis and position posed by MTCEs in a rapidly evolving synoptic-scale flow.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas J. Galarneau Jr., tgalarneau@email.arizona.edu

Abstract

The aim of this study is to examine the development of four tropical cyclones (TCs) in the North Atlantic basin in late August and early September 2010. This period is of interest because four consecutive easterly waves emerged from West Africa and resulted in a multiple TC event (MTCE) over the North Atlantic. The first two TCs—Danielle and Earl—quickly developed into TCs east of 40°W and eventually intensified into major hurricanes. Conversely, the last two TCs—Fiona and Gaston—developed more slowly reaching only weak tropical storm intensity at their peak. The close proximity and differing evolution of these four TCs provides a unique opportunity to examine how these TCs interacted with each other and their surrounding environment, which influenced their development as they moved westward across the North Atlantic. The results showed that concurrent extratropical cyclogenesis events over the western and eastern North Atlantic and the recurvature of TC Danielle produced increased meridional flow over the midlatitude North Atlantic. This increased meridional flow resulted in subsynoptic-scale regions of increased vertical wind shear in the subtropics, which delayed Earl’s development and led to Fiona’s demise. Additionally, increased meridional flow in midlatitudes contributed to anomalous drying of the subtropics. This dry air was entrained into Gaston’s circulation leading to reduced convection and weakening. These TC–TC and TC–environment interactions highlight the difficult challenge of forecasting TC genesis and position posed by MTCEs in a rapidly evolving synoptic-scale flow.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas J. Galarneau Jr., tgalarneau@email.arizona.edu
Save
  • Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, https://doi.org/10.1175/MWR-D-12-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., D. Keyser, L. F. Bosart, C. A. Davis, and J. M. Cordeira, 2015: A composite perspective of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 143, 11221141, https://doi.org/10.1175/MWR-D-14-00270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atallah, E. H., and L. F. Bosart, 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131, 10631081, https://doi.org/10.1175/1520-0493(2003)131<1063:TETAPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and F. Sanders, 1981: The Johnstown flood of July 1977: A long-lived convective system. J. Atmos. Sci., 38, 16161642, https://doi.org/10.1175/1520-0469(1981)038<1616:TJFOJA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., B. J. Moore, J. M. Cordeira, and H. M. Archambault, 2017: Interactions of North Pacific tropical, midlatitude, and polar disturbances resulting in linked extreme weather events over North America in October 2007. Mon. Wea. Rev., 145, 12451273, https://doi.org/10.1175/MWR-D-16-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracken, W. E., and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128, 353376, https://doi.org/10.1175/1520-0493(2000)128<0353:TROSSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brammer, A. B., and C. D. Thorncroft, 2015: Variability and evolution of African easterly wave structures and their relationship with tropical cyclogenesis over the eastern Atlantic. Mon. Wea. Rev., 143, 49754995, https://doi.org/10.1175/MWR-D-15-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 2015: The formation of moist vortices and tropical cyclones in idealized simulations. J. Atmos. Sci., 72, 34993516, https://doi.org/10.1175/JAS-D-15-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747, https://doi.org/10.1175/1520-0493(2003)131<2730:BITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305, https://doi.org/10.1175/JAS-D-11-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2013: Thermodynamic environments of deep convection in Atlantic tropical disturbances. J. Atmos. Sci., 70, 19121928, https://doi.org/10.1175/JAS-D-12-0278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., C. Snyder, and A. C. Didlake, 2008: A vortex-based perspective of eastern Pacific tropical cyclone formation. Mon. Wea. Rev., 136, 24612477, https://doi.org/10.1175/2007MWR2317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., L. F. Bosart, W. E. Bracken, G. J. Hakim, D. M. Schultz, M. A. Bedrick, and K. R. Tyle, 1997: The March 1993 Superstorm cyclogenesis: Incipient phase synoptic- and convective-scale flow interaction and model performance. Mon. Wea. Rev., 125, 30413072, https://doi.org/10.1175/1520-0493(1997)125<3041:TMSCIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/acp-9-5587-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141, 405430, https://doi.org/10.1175/MWR-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., R. McTaggart-Cowan, L. F. Bosart, and C. A. Davis, 2015: Development of North Atlantic tropical disturbances near upper-level potential vorticity streamers. J. Atmos. Sci., 72, 572597, https://doi.org/10.1175/JAS-D-14-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., F. Toepfer, F. Marks, and E. Rappaport, 2014: National Oceanic and Atmospheric Administration Hurricane Forecast Improvement Project years five to ten strategic plan. Tech. Rep. HFIP2014-1.1a, NOAA/Hurricane Forecast Improvement Project, 44 pp., http://www.hfip.org/documents/HFIP_StrategicPlan_Yrs5-10_Nov05_2014_Update.pdf.

  • Ge, X., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 38593875, https://doi.org/10.1175/JAS-D-13-066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Wea. Rev., 144, 38473869, https://doi.org/10.1175/MWR-D-15-0419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halperin, D. J., H. E. Fuelberg, R. E. Hart, J. H. Cossuth, P. Sura, and R. J. Pasch, 2013: An evaluation of tropical cyclone genesis forecasts from global numerical models. Wea. Forecasting, 28, 14231445, https://doi.org/10.1175/WAF-D-13-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau, Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, and K. R. Tyle, 2010: Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Mon. Wea. Rev., 138, 13991419, https://doi.org/10.1175/2009MWR2760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, https://doi.org/10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., 2013: An investigation of composite dropsonde profiles for developing and nondeveloping tropical waves during the 2010 PREDICT field campaign. J. Atmos. Sci., 70, 542558, https://doi.org/10.1175/JAS-D-12-052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krouse, K. D., and A. H. Sobel, 2010: An observational study of multiple tropical cyclone events in the western North Pacific. Tellus, 62A, 256265, https://doi.org/10.1111/j.1600-0870.2010.00435.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C., and Coauthors, 2004: The Atlantic Hurricane Database reanalysis project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present, and Future, R. J. Murname and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Massacand, A. C., H. Wernli, and H. C. Davies, 1998: Heavy precipitation on the alpine southside: An upper-level precursor. Geophys. Res. Lett., 25, 14351438, https://doi.org/10.1029/98GL50869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151, https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) Experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153172, https://doi.org/10.1175/BAMS-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530.

  • Orlanski, I., and J. P. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47A, 605628, https://doi.org/10.3402/tellusa.v47i5.11553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419, https://doi.org/10.1175/2008WAF2222128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 10351054, https://doi.org/10.1002/qj.977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during Phase III of GATE. Mon. Wea. Rev., 105, 317333, https://doi.org/10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and S. C. Jones, 2010: The downstream impact of tropical cyclones on a developing baroclinic wave in idealized scenarios of extratropical transition. Quart. J. Roy. Meteor. Soc., 136, 617637, doi:10.1002/qj.605.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., 2016: A climatology of multiple tropical cyclone events. J. Climate, 29, 48614883, https://doi.org/10.1175/JCLI-D-15-0048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., 2017: Are multiple tropical cyclone events similar among basins? J. Climate, 30, 58055813, https://doi.org/10.1175/JCLI-D-17-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., and H. Saffir, 1974: The hurricane disaster–potential scale. Weatherwise, 27, 169186, https://doi.org/10.1080/00431672.1974.9931702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2012: Observations of the convective environment in developing and non-developing tropical disturbances. Quart. J. Roy. Meteor. Soc., 138, 17211739, https://doi.org/10.1002/qj.1910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2014: Effect of environmental shear, sea-surface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. J. Adv. Model. Earth Syst., 6, 384404, https://doi.org/10.1002/2014MS000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, https://doi.org/10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, https://doi.org/10.1175/2007MWR2132.1.

  • Torn, R. D., and G. J. Hakim, 2015: Comparison of wave packets associated with extratropical transition and winter cyclones. Mon. Wea. Rev., 143, 17821803, https://doi.org/10.1175/MWR-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., J. S. Whitaker, P. Pegion, T. M. Hamill, and G. J. Hakim, 2015: Diagnosis of the source of GFS medium-range track errors in Hurricane Sandy (2012). Mon. Wea. Rev., 143, 132152, https://doi.org/10.1175/MWR-D-14-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tory, K. J., and W. M. Frank, 2010: Tropical cyclone formation. Global Perspectives of Tropical Cyclones: From Science to Mitigation, J. Chan and J. D. Kepert, Eds., World Scientific, 55–91.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2012: Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci., 69, 24332451, https://doi.org/10.1175/JAS-D-11-0298.1.

  • Zawislak, J., and E. J. Zipser, 2014: A multisatellite investigation of the convective properties of developing and nondeveloping tropical disturbances. Mon. Wea. Rev., 142, 46244645, https://doi.org/10.1175/MWR-D-14-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 418 129 17
PDF Downloads 377 105 18