The Influence of Assimilated Upstream, Preconvective Dropsonde Observations on Ensemble Forecasts of Convection Initiation during the Mesoscale Predictability Experiment

Alexandra M. Keclik Atmospheric Science Program, Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Alexandra M. Keclik in
Current site
Google Scholar
PubMed
Close
,
Clark Evans Atmospheric Science Program, Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Clark Evans in
Current site
Google Scholar
PubMed
Close
,
Paul J. Roebber Atmospheric Science Program, Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Paul J. Roebber in
Current site
Google Scholar
PubMed
Close
, and
Glen S. Romine National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Glen S. Romine in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study tests the hypothesis that assimilating mid- to upper-tropospheric, meso-α- to synoptic-scale observations collected in upstream, preconvective environments is insufficient to improve short-range ensemble convection initiation (CI) forecast skill over the set of cases considered by the 2013 Mesoscale Predictability Experiment (MPEX) because of a limited influence upon the lower-tropospheric phenomena that modulate CI occurrence, timing, and location. The ensemble Kalman filter implementation within the Data Assimilation Research Testbed as coupled to the Advanced Research Weather Research and Forecasting (WRF) Model is used to initialize two nearly identical 30-member ensembles of short-range forecasts for each case: one initial condition set that incorporates MPEX dropsonde observations and one that excludes these observations. All forecasts for a given mission begin at 1500 UTC and are integrated for 15 h on a convection-permitting grid encompassing much of the conterminous United States. Forecast verification is conducted probabilistically using fractions skill score and deterministically using a 2 × 2 contingency table approach at multiple neighborhood sizes and spatiotemporal event-matching thresholds to assess forecast skill and support hypothesis testing. The probabilistic verification represents the first of its kind for numerical CI forecasts. Forecasts without MPEX observations have high fractions skill score and probabilities of detection on the meso-α scale but exhibit a considerable high bias for forecast CI event count. Assimilating MPEX observations has a negligible impact upon forecast skill for the cases considered, independent of verification metric, as the MPEX observations result in only subtle differences primarily manifest in the position and intensity of atmospheric features responsible for focusing and/or triggering deep, moist convection.

Current affiliation: National Weather Service, Chanhassen, Minnesota.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Clark Evans, evans36@uwm.edu

Abstract

This study tests the hypothesis that assimilating mid- to upper-tropospheric, meso-α- to synoptic-scale observations collected in upstream, preconvective environments is insufficient to improve short-range ensemble convection initiation (CI) forecast skill over the set of cases considered by the 2013 Mesoscale Predictability Experiment (MPEX) because of a limited influence upon the lower-tropospheric phenomena that modulate CI occurrence, timing, and location. The ensemble Kalman filter implementation within the Data Assimilation Research Testbed as coupled to the Advanced Research Weather Research and Forecasting (WRF) Model is used to initialize two nearly identical 30-member ensembles of short-range forecasts for each case: one initial condition set that incorporates MPEX dropsonde observations and one that excludes these observations. All forecasts for a given mission begin at 1500 UTC and are integrated for 15 h on a convection-permitting grid encompassing much of the conterminous United States. Forecast verification is conducted probabilistically using fractions skill score and deterministically using a 2 × 2 contingency table approach at multiple neighborhood sizes and spatiotemporal event-matching thresholds to assess forecast skill and support hypothesis testing. The probabilistic verification represents the first of its kind for numerical CI forecasts. Forecasts without MPEX observations have high fractions skill score and probabilities of detection on the meso-α scale but exhibit a considerable high bias for forecast CI event count. Assimilating MPEX observations has a negligible impact upon forecast skill for the cases considered, independent of verification metric, as the MPEX observations result in only subtle differences primarily manifest in the position and intensity of atmospheric features responsible for focusing and/or triggering deep, moist convection.

Current affiliation: National Weather Service, Chanhassen, Minnesota.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Clark Evans, evans36@uwm.edu
Save
  • Aberson, S. D., 2010: 10 years of hurricane synoptic surveillance (1997–2006). Mon. Wea. Rev., 138, 15361549, https://doi.org/10.1175/2009MWR3090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, https://doi.org/10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, https://doi.org/10.1111/j.1600-0870.2008.00361.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 23592371, https://doi.org/10.1175/MWR-D-11-00013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D. M., and Coauthors, 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, https://doi.org/10.1175/BAMS-D-11-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., B. D. Jamison, W. R. Moninger, S. R. Sahm, B. E. Schwartz, and T. W. Schlatter, 2010: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle. Mon. Wea. Rev., 138, 13191343, https://doi.org/10.1175/2009MWR3097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergot, T., 1999: Adaptive observations during FASTEX: A systematic survey of upstream flights. Quart. J. Roy. Meteor. Soc., 125, 32713298, https://doi.org/10.1002/qj.49712556108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berman, J. D., R. D. Torn, G. S. Romine, and M. L. Weisman, 2017: Sensitivity of northern Great Plains convection forecasts to upstream and downstream forecast errors. Mon. Wea. Rev., 145, 21412163, https://doi.org/10.1175/MWR-D-16-0353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burghardt, B. J., C. Evans, and P. J. Roebber, 2014: Assessing the predictability of convection initiation in the High Plains using an object-based approach. Wea. Forecasting, 29, 403418, https://doi.org/10.1175/WAF-D-13-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burlingame, B. M., C. Evans, and P. J. Roebber, 2017: The influence of PBL parameterization on the practical predictability of convection initiation during the Mesoscale Predictability Experiment (MPEX). Wea. Forecasting, 32, 11611183, https://doi.org/10.1175/WAF-D-16-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., C.-C. Wu, P.-H. Lin, S. D. Aberson, M. Weissmann, F. Harnisch, and T. Nakazawa, 2011: The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 17281743, https://doi.org/10.1175/2010MWR3582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CISL, 2012: Introduction to Yellowstone. National Center for Atmospheric Research, accessed April 2016, https://www2.cisl.ucar.edu/resources/computational-systems/yellowstone.

  • Coniglio, M. C., S. M. Hitchcock, and K. H. Knopfmeier, 2016: Impact of assimilating preconvective upsonde observations on short-term forecasts of convection observed during MPEX. Mon. Wea. Rev., 144, 43014325, https://doi.org/10.1175/MWR-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J. D., and W. A. Gallus, 2013: The impact of large-scale forcing on skill of simulated convective initiation and upscale evolution with convection-allowing grid spacings in the WRF. Wea. Forecasting, 28, 9941018, https://doi.org/10.1175/WAF-D-13-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. A. Weyn, 2016: Thunderstorms do not get butterflies. Bull. Amer. Meteor. Soc., 97, 237243, https://doi.org/10.1175/BAMS-D-15-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fourrié, N., D. Marchal, F. Rabier, B. Chapnik, and G. Desroziers, 2006: Impact study of the 2003 North Atlantic THORPEX regional campaign. Quart. J. Roy. Meteor. Soc., 132, 275295, https://doi.org/10.1256/qj.05.31.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowle, M. A., and P. J. Roebber, 2003: Short-range (0–48 h) numerical prediction of convective occurrence, mode, and location. Wea. Forecasting, 18, 782794, https://doi.org/10.1175/1520-0434(2003)018<0782:SHNPOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gremillion, M. S., and R. E. Orville, 1999: Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D. Wea. Forecasting, 14, 640649, https://doi.org/10.1175/1520-0434(1999)014<0640:TCOCTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, A. J., C. C. Weiss, and B. C. Ancell, 2016: Ensemble sensitivity analysis for mesoscale forecasts of dryline convection initiation. Mon. Wea. Rev., 144, 41614182, https://doi.org/10.1175/MWR-D-15-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp., http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.

  • Joly, A., and Coauthors, 1999: Overview of the field phase of the Fronts and Atlantic Storm-Track Experiment (FASTEX) project. Quart. J. Roy. Meteor. Soc., 125, 31313163, https://doi.org/10.1002/qj.49712556103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and T. M. Weckwerth, 2003: Forcing and organization of convective storms. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, 75–103, https://doi.org/10.1175/0065-9401(2003)030<0075:FAOOCS>2.0.CO;2.

    • Crossref
    • Export Citation
  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, https://doi.org/10.1175/BAMS-D-11-00264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res., 102, 23 42923 465, https://doi.org/10.1029/97JD01569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., 2012: Automating the Analysis of Spatial Grids: A Practical Guide to Data Mining Geospatial Images for Human and Environmental Applications. Geotechnologies and the Environment Series, Vol. 6, Springer, 320 pp.

    • Crossref
    • Export Citation
  • Lakshmanan, V., and T. Smith, 2010: An objective method of evaluating and devising storm-tracking algorithms. Wea. Forecasting, 25, 701709, https://doi.org/10.1175/2009WAF2222330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., and T. W. Humphrey, 2014: A MapReduce technique to mosaic continental-scale weather radar data in real-time. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 721732, https://doi.org/10.1109/JSTARS.2013.2282040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, K. Hondl, G. J. Stumpf, and A. Witt, 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802823, https://doi.org/10.1175/WAF942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. J. Stumpf, and K. Hondl, 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., K. Hondl, and R. Rabin, 2009: An efficient, general-purpose technique for identifying storm cells in geospatial images. J. Atmos. Oceanic Technol., 26, 523537, https://doi.org/10.1175/2008JTECHA1153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., C. Karstens, J. Krause, and L. Tang, 2014: Quality control of weather radar data using polarimetric variables. J. Atmos. Oceanic Technol., 31, 12341249, https://doi.org/10.1175/JTECH-D-13-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., and M. Xue, 2008: Prediction of convective initiation and storm evolution on 12 June 2002 during IHOP_2002. Part I: Control simulation and sensitivity experiments. Mon. Wea. Rev., 136, 22612282, https://doi.org/10.1175/2007MWR2161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, N. A., and A. L. Houston, 2015: Spatiotemporal distribution of thunderstorm initiation in the US Great Plains from 2005 to 2007. Int. J. Climatol., 35, 40474056, https://doi.org/10.1002/joc.4261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madaus, L. E., and G. J. Hakim, 2016: Observable surface anomalies preceding simulated isolated convection initiation. Mon. Wea. Rev., 144, 22652284, https://doi.org/10.1175/MWR-D-15-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., 2016: A review of targeted observations. Bull. Amer. Meteor. Soc., 97, 22872303, https://doi.org/10.1175/BAMS-D-14-00259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., and Coauthors, 2011: Targeted observations for improving numerical weather prediction: An overview. WWRP/THORPEX Rep. 15, World Meteorological Organization, 45 pp., https://www.wmo.int/pages/prog/arep/wwrp/new/documents/THORPEX_No_15.pdf.

  • Markowski, P., C. Hannon, and E. Rasmussen, 2006: Observations of convection initiation “failure” from the 12 June 2002 IHOP deployment. Mon. Wea. Rev., 134, 375405, https://doi.org/10.1175/MWR3059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., J. K. Williams, C. P. Jewett, D. Ahijevych, A. LeRoy, and J. R. Walker, 2015: Probabilistic 0–1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data. J. Appl. Meteor. Climatol., 54, 10391059, https://doi.org/10.1175/JAMC-D-14-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montani, A., A. J. Thorpe, R. Buizza, and P. Undén, 1999: Forecast skill of the ECMWF model using targeted observations during FASTEX. Quart. J. Roy. Meteor. Soc., 125, 32193240, https://doi.org/10.1002/qj.49712556106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCDC, 2015: Billion-dollar weather and climate disasters: Summary stats. NOAA/National Centers for Environmental Information, accessed November 2016, https://www.ncdc.noaa.gov/billions/summary-stats.

  • Rabier, F., and Coauthors, 2008: An update on THORPEX-related research in data assimilation and observing strategies. Nonlinear Processes Geophys., 15, 8194, https://doi.org/10.5194/npg-15-81-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, https://doi.org/10.1175/2008WAF2222159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, C. Snyder, J. L. Anderson, and M. L. Weisman, 2013: Model bias in a continuously cycled assimilated system and its influence of convection-permitting forecasts. Mon. Wea. Rev., 141, 12631284, https://doi.org/10.1175/MWR-D-12-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, R. D. Torn, and M. L. Weisman, 2016: Impact of assimilating dropsonde observations from MPEX on ensemble forecasts of severe weather events. Mon. Wea. Rev., 144, 37993823, https://doi.org/10.1175/MWR-D-15-0407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2015: Resolution dependence of initiation and upscale growth of deep convection in convection-allowing forecasts of the 31 May–1 June 2013 supercell and MCS. Mon. Wea. Rev., 143, 43314354, https://doi.org/10.1175/MWR-D-15-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, https://doi.org/10.1175/2009WAF2222267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, M. L. Weisman, R. A. Sobash, K. R. Fossell, K. W. Manning, and S. B. Trier, 2015: A real-time convection-allowing ensemble prediction system initialized by mesoscale ensemble Kalman filter analyses. Wea. Forecasting, 30, 11581181, https://doi.org/10.1175/WAF-D-15-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stratman, D. R., M. C. Coniglio, S. E. Koch, and M. Xue, 2013: Use of multiple verification methods to evaluate forecasts of convection from hot- and cold-start convection-allowing models. Wea. Forecasting, 28, 119138, https://doi.org/10.1175/WAF-D-12-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tegen, I., P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner, 1997: Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res., 102, 23 89523 915, https://doi.org/10.1029/97JD01864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA High-Resolution Hurricane test. Mon. Wea. Rev., 138, 43754392, https://doi.org/10.1175/2010MWR3361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Performance characteristics of a pseudo-operational ensemble Kalman filter. Mon. Wea. Rev., 136, 39473963, https://doi.org/10.1175/2008MWR2443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. S. Romine, 2015: Sensitivity of central Oklahoma convection forecasts to upstream potential vorticity anomalies during two strongly forced cases during MPEX. Mon. Wea. Rev., 143, 40644087, https://doi.org/10.1175/MWR-D-15-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502, https://doi.org/10.1175/MWR3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., G. S. Romine, and T. J. Galarneau Jr., 2017: Sensitivity of dryline convection forecasts to upstream forecast errors for two weakly forced MPEX cases. Mon. Wea. Rev., 145, 18311852, https://doi.org/10.1175/MWR-D-16-0457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. J. Stensrud, M. C. Coniglio, R. S. Schumacher, M. E. Baldwin, S. Waugh, and D. T. Conlee, 2016: Mobile radiosonde deployments during the Mesoscale Predictability Experiment (MPEX): Rapid and adaptive sampling of upscale convective feedbacks. Bull. Amer. Meteor. Soc., 97, 329336, https://doi.org/10.1175/BAMS-D-14-00258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223, https://doi.org/10.1175/BAMS-86-2-205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., K. Young, and T. Hock, 2016: NCAR GPS dropsonde humidity dry bias. NCAR Tech. Note NCAR/TN-531+STR, 8 pp., http://dx.doi.org/10.5065/D6XS5SGX.

    • Crossref
    • Export Citation
  • Wandishin, M. S., D. J. Stensrud, S. L. Mullen, and L. J. Wicker, 2010: On the predictability of mesoscale convective systems: Three-dimensional simulations. Mon. Wea. Rev., 138, 863885, https://doi.org/10.1175/2009MWR2961.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, https://doi.org/10.1175/MWR3067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., H. V. Murphey, C. Flamant, J. Goldstein, and C. R. Pettet, 2008: An observational study of convection initiation on 12 June 2002 during IHOP_2002. Mon. Wea. Rev., 136, 22832304, https://doi.org/10.1175/2007MWR2128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, https://doi.org/10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Coauthors, 2015: The Mesoscale Predictability Experiment (MPEX). Bull. Amer. Meteor. Soc., 96, 21272150, https://doi.org/10.1175/BAMS-D-13-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in Atmospheric Sciences: An Introduction. International Geophysics Series, Vol. 59, Elsevier, 467 pp.

  • Wu, C.-C., K.-H. Chou, P.-H. Lin, S. D. Aberson, M. S. Peng, and T. Nakazawa, 2007: The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Wea. Forecasting, 22, 11571176, https://doi.org/10.1175/2007WAF2006062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, https://doi.org/10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 748 497 151
PDF Downloads 221 63 5