Observations of Ash, Ice, and Lightning within Pyrocumulus Clouds Using Polarimetric NEXRAD Radars and the National Lightning Detection Network

Kendell T. LaRoche Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Kendell T. LaRoche in
Current site
Google Scholar
PubMed
Close
and
Timothy J. Lang NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Timothy J. Lang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A pyrocumulus is a convective cloud that can develop over a wildfire. Under certain conditions, pyrocumulus clouds become vertically developed enough to produce lightning. NEXRAD dual-polarization weather radar and upgraded National Lightning Detection Network (NLDN) data were used to analyze 10 case studies of ash plumes and pyrocumulus clouds from 2013 that either did or did not produce detected lightning. Past research has shown that pyrocumulus cases are most likely to produce lightning when there is a decrease in differential reflectivity (toward 0 dB) and an increase in the correlation coefficient (to >0.8), as measured by polarimetric radar, due to the transition from pure smoke/ash to frozen hydrometeors. All pyrocumulus cases that produced lightning in this study displayed the polarimetric characteristics of rimed ice within their respective clouds. Time series analysis of radar-inferred ash and rimed ice volumes within ash plumes and pyrocumulus clouds showed that NLDN-detected lightning occurred only after the cloud contained significant amounts of precipitation-sized rimed ice. The results suggest that the recently dual-pol-enabled NEXRADs and the more sensitive NLDN network can be used to explore ash plume and pyrocumulus microphysical structure and lightning production.

Current affiliation: South Texas Weather Modification Association, Pleasanton, Texas.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy J. Lang, timothy.j.lang@nasa.gov

Abstract

A pyrocumulus is a convective cloud that can develop over a wildfire. Under certain conditions, pyrocumulus clouds become vertically developed enough to produce lightning. NEXRAD dual-polarization weather radar and upgraded National Lightning Detection Network (NLDN) data were used to analyze 10 case studies of ash plumes and pyrocumulus clouds from 2013 that either did or did not produce detected lightning. Past research has shown that pyrocumulus cases are most likely to produce lightning when there is a decrease in differential reflectivity (toward 0 dB) and an increase in the correlation coefficient (to >0.8), as measured by polarimetric radar, due to the transition from pure smoke/ash to frozen hydrometeors. All pyrocumulus cases that produced lightning in this study displayed the polarimetric characteristics of rimed ice within their respective clouds. Time series analysis of radar-inferred ash and rimed ice volumes within ash plumes and pyrocumulus clouds showed that NLDN-detected lightning occurred only after the cloud contained significant amounts of precipitation-sized rimed ice. The results suggest that the recently dual-pol-enabled NEXRADs and the more sensitive NLDN network can be used to explore ash plume and pyrocumulus microphysical structure and lightning production.

Current affiliation: South Texas Weather Modification Association, Pleasanton, Texas.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy J. Lang, timothy.j.lang@nasa.gov
Save
  • Balakrishnan, N., and D. S. Zrnic, 1990: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540, https://doi.org/10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. The University of Chicago Press, 324 pp.

  • Biagi, C. J., K. L. Cummins, K. E. Kehoe, and E. P. Krider, 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, https://doi.org/10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017: SHARPpy: An Open-Source Sounding Analysis Toolkit for the Atmospheric Sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canterbury, C., 2014: Looking back at the Royal Gorge Fire, one year later. Daily Record, Canon City News, 7 June 2014, http://www.canoncitydailyrecord.com/news/canoncity-local-news/ci_25914616/looking-back-at-royal-gorge-fire-one-year.

  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning location systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromag. Compat., 51, 499518, https://doi.org/10.1109/TEMC.2009.2023450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., J. A. Smith, W. F. Krajewski, M. L. Baeck, and B. Seo, 2015: NEXRAD NWS polarimetric precipitation product evaluation for IFloodS. J. Hydrometeor., 16, 16761699, https://doi.org/10.1175/JHM-D-14-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deierling, W., W. A. Petersen, J. Latham, S. Ellis, and H. J. Christian, 2008: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res., 113, D15210, https://doi.org/10.1029/2007JD009700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. Climatol., 52, 21622186, https://doi.org/10.1175/JAMC-D-12-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., M. D. Fromm, and N. McCarthy, 2017: Pyrocumulonimbus lightning and fire ignition on Black Saturday in southeast Australia. J. Geophys. Res. Atmos., 122, 73427354, https://doi.org/10.1002/2017JD026577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandes, W. A., I. R. Pinto, O. Pinto, K. M. Longo, and S. R. Freitas, 2006: New findings about the influence of smoke from fires on the cloud-to-ground lightning characteristics in the Amazon region. Geophys. Res. Lett., 33, L20810, https://doi.org/10.1029/2006GL027744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fromm, M., R. Bevilacqua, R. Servranckx, J. Rosen, J. P. Thayer, J. Herman, and D. Larko, 2005: Pyro-cumulonimbus injection of smoke to the stratosphere: Observations and impact of a super blowup in northwestern Canada on 3–4 August 1998. J. Geophys. Res., 110, D08205, https://doi.org/10.1029/2004JD005350.

    • Search Google Scholar
    • Export Citation
  • Fromm, M., D. T. Lindsey, R. Servranckx, G. Yue, T. Trickl, R. Sica, P. Doucet, and S. Godin-Beekmann, 2010: The untold story of pyrocumulonimbus. Bull. Amer. Meteor. Soc., 91, 11931209, https://doi.org/10.1175/2010BAMS3004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART): A library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inciweb, 2014a: Hardluck fire. Shoshone National Forest, U.S. Forest Service, WY, accessed 1 July 2014, http://inciweb.nwcg.gov/incident/3546/.

  • Inciweb, 2014b: Royal Gorge fire. Royal Gorge Field Office, Bureau of Land Management, CO, accessed 1 July 2014, http://inciweb.nwcg.gov/incident/3419/.

  • Inciweb, 2014c: Hardluck fire progression map July 28, 2013. Shoshone National Forest, U.S. Forest Service, accessed 1 July 2014, https://inciweb.nwcg.gov/incident/map/3546/16/31489/.

  • Inciweb, 2014d: Rim fire progression map, August 31, 2013. Stanislaus National Forest, U.S. Forest Service, accessed 1 July 2014, https://inciweb.nwcg.gov/incident/map/3660/45/34774/.

  • Inciweb, 2014e: Silver fire IR progression map 6-28-13. Gila National Forest, U.S. Forest Service, accessed 1 July 2014, https://inciweb.nwcg.gov/incident/map/3414/6/30326/.

  • Johnson, R. H., R. S. Schumacher, J. H. Ruppert, D. T. Lindsey, J. E. Ruthford, and L. Kriederman, 2014: The role of convective outflow in the Waldo Canyon fire. Mon. Wea. Rev., 142, 30613080, https://doi.org/10.1175/MWR-D-13-00361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., S. A. Christopher, and W. Petersen, 2009: Dual-polarization radar characteristics of an apartment fire. J. Atmos. Oceanic Technol., 26, 22572269, https://doi.org/10.1175/2009JTECHA1290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 24922506, https://doi.org/10.1175/1520-0493(2002)130<2492:RBCSKP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., S. A. Rutledge, B. Dolan, P. Krehbiel, W. Rison, and D. T. Lindsey, 2014: Lightning in wildfire smoke plumes observed in Colorado during summer 2012. Mon. Wea. Rev., 142, 489507, https://doi.org/10.1175/MWR-D-13-00184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., K. Laroche, B. Baum, M. Bateman, and D. Mach, 2015: Investigation of the electrification of pyrocumulus clouds. Seventh Conf. on the Meteorological Applications of Lightning Data, Phoenix, AZ, Amer. Meteor. Soc., 6.5, https://ams.confex.com/ams/95Annual/webprogram/Paper262792.html.

  • Lareau, N. P., and C. B. Clements, 2016: Environmental controls on pyrocumulus and pyrocumulonimbus initiation and development. Atmos. Chem. Phys., 16, 40054022, https://doi.org/10.5194/acp-16-4005-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latham, D. J., 1991: Lightning flashes from a prescribed fire-induced cloud. J. Geophys. Res., 96, 17 15117 157, https://doi.org/10.1029/91JD01808.

  • Lyons, W. A., T. E. Nelson, E. R. Williams, J. A. Cramer, and T. R. Turner, 1998: Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires. Science, 282, 7780, https://doi.org/10.1126/science.282.5386.77.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., and C. L. Ziegler, 2013: Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70, 20322050, https://doi.org/10.1175/JAS-D-12-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattos, E. V., L. A. T. Machado, E. R. Williams, S. J. Goodman, R. J. Blakeslee, and J. C. Bailey, 2017: Electrification life cycle of incipient thunderstorms. J. Geophys. Res. Atmos., 122, 46704697, https://doi.org/10.1002/2016JD025772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., D. S. Zrnić, R. M. Rabin, and P. Zhang, 2008: Radar polarimetric signatures of fire plumes in Oklahoma. Geophys. Res. Lett., 35, L14815, https://doi.org/10.1029/2008GL034311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., D. S. Zrnić, and R. M. Rabin, 2009: Polarimetric radar properties of smoke plumes: A model. J. Geophys. Res., 114, D21204, https://doi.org/10.1029/2009JD012647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, M. J., and A. Nag, 2015: Cloud lightning performance and climatology of the U.S. based on the upgraded U.S. National Lightning Detection Network. Seventh Conf. on the Meteorological Applications of Lightning Data, Phoenix, AZ, Amer. Meteor. Soc., 8.2, https://ams.confex.com/ams/95Annual/webprogram/Manuscript/Paper262391/AMS2015_MALD_8.2_murphy.pdf.

  • Orville, R. E., and A. C. Silver, 1997: Lightning ground flash density in the contiguous United States: 1992–95. Mon. Wea. Rev., 125, 631638, https://doi.org/10.1175/1520-0493(1997)125<0631:LGFDIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, D. A., M. D. Fromm, J. E. Solbrig, E. J. Hyer, M. L. Surratt, and J. R. Campbell, 2017a: Detection and inventory of intense pyroconvection in western North America using GOES-15 daytime infrared data. J. Appl. Meteor. Climatol., 56, 471493, https://doi.org/10.1175/JAMC-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, D. A., E. J. Hyer, J. R. Campbell, J. E. Solbrig, and M. D. Fromm, 2017b: A conceptual model for development of intense pyrocumulonimbus in western North America. Mon. Wea. Rev., 145, 22352255, https://doi.org/10.1175/MWR-D-16-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., H. J. Christian, and S. A. Rutledge, 2005: TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett., 32, L14819, https://doi.org/10.1029/2005GL023236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reutter, P., and Coauthors, 2014: 3-D model simulations of dynamical and microphysical interactions in pyroconvective clouds under idealized conditions. Atmos. Chem. Phys., 14, 75737583, https://doi.org/10.5194/acp-14-7573-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., 2010: Radar for Meteorologists. 5th ed. Rinehart Publications, 482 pp.

  • Rosenfeld, D., M. Fromm, J. Trentmann, G. Luderer, M. O. Andreae, and R. Servranckx, 2007: The Chisholm firestorm: Observed microstructure, precipitation and lightning activity of a pyro-cumulonimbus. Atmos. Chem. Phys., 7, 645659, https://doi.org/10.5194/acp-7-645-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation advanced baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, https://doi.org/10.1175/BAMS-86-8-1079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., D. J. Seo, M. L. Baeck, and M. D. Hudlow, 1996: An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 32, 20352045, https://doi.org/10.1029/96WR00270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23, 12581260, https://doi.org/10.1175/1520-0450(1984)023<1258:ERRFFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and K. Miyawaki, 2002: Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59, 10181025, https://doi.org/10.1175/1520-0469(2002)059<1018:ROREIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., L. J. Miller, K. C. Wiens, and S. A. Rutledge, 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 41274150, https://doi.org/10.1175/JAS3585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnić, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, https://doi.org/10.1175/JAS3615.1.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 2001: The electrification of severe storms. Severe Convective Storms, Meteor. Monogr., No. 49, Amer. Meteor. Soc., 527–561.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1870 728 39
PDF Downloads 681 126 12