• Arnault, J., and F. Roux, 2009: Case study of a developing African easterly wave during NAMMA: An energetic point of view. J. Atmos. Sci., 66, 29913020, doi:10.1175/2009JAS3009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnault, J., and F. Roux, 2010: Comparison between two case studies of developing and nondeveloping African easterly waves during NAMMA and AMMA/SOP-3: Absolute vertical vorticity budget. Mon. Wea. Rev., 138, 14201445, doi:10.1175/2009MWR3120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnault, J., and F. Roux, 2011: Characteristics of African easterly waves associated with tropical cyclogenesis in the Cape Verde Islands region in July–August–September of 2004–2008. Atmos. Res., 100, 6182, doi:10.1016/j.atmosres.2010.12.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G. J., and C. D. Thorncroft, 2005: Case study of an intense African easterly wave. Mon. Wea. Rev., 133, 752766, doi:10.1175/MWR2884.1.

  • Berry, G. J., and C. D. Thorncroft, 2012: African easterly wave dynamics in a mesoscale numerical model: The upscale role of convection. J. Atmos. Sci., 69, 12671283, doi:10.1175/JAS-D-11-099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G. J., C. D. Thorncroft, and T. Hewson, 2007: African easterly waves during 2004—Analysis using objective techniques. Mon. Wea. Rev., 135, 12511267, doi:10.1175/MWR3343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, doi:10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camara, M., A. Diedhiou, and A. Gaye, 2011: African easterly waves and cyclonic activity over the eastern Atlantic: Composite case studies. Int. J. Geophys., 2011, 874292, doi:10.1155/2011/874292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. B., 1969: Some remarks on African disturbances and their progress over the tropical Atlantic. Mon. Wea. Rev., 97, 716726, doi:10.1175/1520-0493(1969)097<0716:SROADA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and Y.-C. Liu, 2014: The relation between dry vortex merger and tropical cyclone genesis over the Atlantic Ocean. J. Geophys. Res. Atmos., 119, 11 64111 661, doi:10.1002/2014JD021749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 2006: Characteristics of African easterly waves depicted by ECMWF reanalyses for 1991–2000. Mon. Wea. Rev., 134, 35393566, doi:10.1175/MWR3259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-Y. Wang, and A. J. Clark, 2008: North Atlantic hurricanes contributed by African easterly waves north and south of the African easterly jet. J. Climate, 21, 67676776, doi:10.1175/2008JCLI2523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiao, S., and G. S. Jenkins, 2010: Numerical investigations on the formation of Tropical Storm Debby during NAMMA-06. Wea. Forecasting, 25, 866884, doi:10.1175/2010WAF2222313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. Knaff, and B. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, doi:10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, M., and A. Aiyyer, 2013a: Energy dispersion in African easterly waves. J. Atmos. Sci., 70, 130145, doi:10.1175/JAS-D-12-019.1.

  • Diaz, M., and A. Aiyyer, 2013b: The genesis of African easterly waves by upstream development. J. Atmos. Sci., 70, 34923512, doi:10.1175/JAS-D-12-0342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Viltard, P. de Felice, and H. Laurent, 1999: Easterly wave regimes and associated convection over West Africa and tropical Atlantic: Results from the NCEP/NCAR and ECMWF reanalyses. Climate Dyn., 15, 795822, doi:10.1007/s003820050316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Viltard, and P. de Felice, 2001: Composite patterns of easterly disturbances over West Africa and the tropical Atlantic: A climatology from the 1979–95 NCEP/NCAR reanalyses. Climate Dyn., 18, 241253, doi:10.1007/s003820100173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieng, A. L., L. Eymard, S. M. Sall, A. Lazar, and M. Leduc-Leballeur, 2014: Analysis of strengthening and dissipating mesoscale convective systems propagating off the West African coast. Mon. Wea. Rev., 142, 46004623, doi:10.1175/MWR-D-13-00388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. H., and A. Reiner, 2003: Spatiotemporal variability of the relation between African easterly waves and West African squall lines in 1998 and 1999. J. Geophys. Res., 108, 4332, doi:10.1029/2002JD002816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. H., D. G. Vincent, and V. Ermert, 2006: Rainfall types in the West African Sudanian Zone during the summer monsoon 2002. Mon. Wea. Rev., 134, 21432164, doi:10.1175/MWR3182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S., and L. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187, doi:10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, doi:10.1126/science.1060040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guy, N., S. A. Rutledge, and R. Cifelli, 2011: Radar characteristics of continental, coastal, and maritime convection observed during AMMA/NAMMA. Quart. J. Roy. Meteor. Soc., 137, 12411256, doi:10.1002/qj.839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, N. M., G. N. Kiladis, and C. D. Thorncroft, 2006: Three-dimensional structure and dynamics of African easterly waves. Part II: Dynamical modes. J. Atmos. Sci., 63, 22312245, doi:10.1175/JAS3742.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haralick, R. M., and L. G. Shapiro, 1992: Computer and Robot Vision. 1st ed. Addison-Wesley Longman, 630 pp.

  • Hodges, K., and C. D. Thorncroft, 1997: Distribution and statistics of African mesoscale convective weather systems based on the ISCCP Meteosat imagery. Mon. Wea. Rev., 125, 28212837, doi:10.1175/1520-0493(1997)125<2821:DASOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K., D. Chappell, G. Robinson, and G. Yang, 2000: An improved algorithm for generating global window brightness temperatures from multiple satellite infrared imagery. J. Atmos. Oceanic Technol., 17, 12961312, doi:10.1175/1520-0426(2000)017<1296:AIAFGG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, K. Hodges, and A. Aiyyer, 2007: West African storm tracks and their relationship to Atlantic tropical cyclones. J. Climate, 20, 24682483, doi:10.1175/JCLI4139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, and K. R. Tyle, 2010: Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Mon. Wea. Rev., 138, 13991419, doi:10.1175/2009MWR2760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. D. Thorncroft, 2013: Regional differences in the kinematic and thermodynamic structure of African easterly waves. Quart. J. Roy. Meteor. Soc., 139, 15981614, doi:10.1002/qj.2047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G., C. Thorncroft, and N. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, doi:10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, doi:10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., C. Flamant, and S. Janicot, 2010: Regional-scale convection patterns during strong and weak phases of the Saharan heat low. Atmos. Sci. Lett., 11, 255264, doi:10.1002/asl.284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., D. J. Cecil, and W. A. Petersen, 2013: Relation between tropical easterly waves, convection, and tropical cyclogenesis: A Lagrangian perspective. Mon. Wea. Rev., 141, 26492668, doi:10.1175/MWR-D-12-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, S., N. M. J. Hall, and G. N. Kiladis, 2010: A climatological study of transient–mean-flow interactions over West Africa. Quart. J. Roy. Meteor. Soc., 136, 397410, doi:10.1002/qj.474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., L. A. Avila, and J.-G. Jiing, 1998: Atlantic tropical systems of 1994 and 1995: A comparison of a quiet season to a near-record-breaking one. Mon. Wea. Rev., 126, 11061123, doi:10.1175/1520-0493(1998)126<1106:ATSOAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M. S., B. Fu, T. F. Hogan, and T. Li, 2006: On African easterly waves that impacted two tropical cyclones in 2004. Geophys. Res. Lett., 33, L11807, doi:10.1029/2006GL026038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poan, D., R. Roehrig, F. Couvreux, and J. Lafore, 2013: West African monsoon intraseasonal variability: A precipitable water perspective. J. Atmos. Sci., 70, 10351052, doi:10.1175/JAS-D-12-087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poan, D., J.-P. Lafore, R. Roehrig, and F. Couvreux, 2015: Internal processes within the African Easterly Wave system. Quart. J. Roy. Meteor. Soc., 141, 11211136, doi:10.1002/qj.2420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., and C. Thorncroft, 1999: The low-level structure of African easterly waves in 1995. Mon. Wea. Rev., 127, 22662280, doi:10.1175/1520-0493(1999)127<2266:TLLSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 317333, doi:10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., E. Klinker, and A. Hollingsworth, 1988: The structure and characteristics of African easterly wave disturbances as determined from the ECMWF operational analysis/forecast system. Meteor. Atmos. Phys., 38, 2233, doi:10.1007/BF01029944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and M. Blackburn, 1999: Maintenance of the African easterly jet. Quart. J. Roy. Meteor. Soc., 125, 763786.

  • Thorncroft, C. D., and K. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179, doi:10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1994: An idealized study of African easterly waves. I: A linear view. Quart. J. Roy. Meteor. Soc., 120, 953982, doi:10.1002/qj.49712051809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2009: Tropical storm development from African easterly waves in the eastern Atlantic: A comparison of two successive waves using a regional model as part of NASA AMMA 2006. J. Atmos. Sci., 66, 33133334, doi:10.1175/2009JAS3064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 447 447 16
PDF Downloads 145 145 19

Trains of African Easterly Waves and Their Relationship to Tropical Cyclone Genesis in the Eastern Atlantic

View More View Less
  • 1 Laboratoire de Physique de l’Atmosphère et de l’Océan Siméon Fongang, Cheikh Anta Diop University, Dakar, Senegal
  • | 2 Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Pierre et Marie Curie University, Paris, France
  • | 3 Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble, France
  • | 4 Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Pierre et Marie Curie University, Paris, France
© Get Permissions
Restricted access

Abstract

In this study, the relationship between trains of African easterly waves (AEWs) and downstream tropical cyclogenesis is studied. Based on 19 summer seasons (July–September from 1990 to 2008) of ERA-Interim reanalysis fields and brightness temperature from the Cloud User Archive, the signature of AEW troughs and embedded convection are tracked from the West African coast to the central Atlantic. The tracked systems are separated into four groups: (i) systems originating from the north zone of the midtropospheric African easterly jet (AEJ), (ii) those coming from the south part of AEJ, (iii) systems that are associated with a downstream trough located around 2000 km westward (termed DUO systems), and (iv) those that are not associated with such a close downstream trough (termed SOLO systems).

By monitoring the embedded 700-hPa-filtered relative vorticity and 850-hPa wind convergence anomaly associated with these families along their trajectories, it is shown that the DUO generally have stronger dynamical structure and statistically have a longer lifetime than the SOLO ones. It is suggested that the differences between them may be due to the presence of the previous intense downstream trough in DUO cases, enhancing the low-level convergence behind them. Moreover, a study of the relationship between system trajectories and tropical depressions occurring between the West African coast and 40°W showed that 90% of tropical depressions are identifiable from the West African coast in tracked systems, mostly in the DUO cases originating from the south zone of the AEJ.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Abdou Lahat Dieng, abdoulahat.dieng@ucad.edu.sn

Abstract

In this study, the relationship between trains of African easterly waves (AEWs) and downstream tropical cyclogenesis is studied. Based on 19 summer seasons (July–September from 1990 to 2008) of ERA-Interim reanalysis fields and brightness temperature from the Cloud User Archive, the signature of AEW troughs and embedded convection are tracked from the West African coast to the central Atlantic. The tracked systems are separated into four groups: (i) systems originating from the north zone of the midtropospheric African easterly jet (AEJ), (ii) those coming from the south part of AEJ, (iii) systems that are associated with a downstream trough located around 2000 km westward (termed DUO systems), and (iv) those that are not associated with such a close downstream trough (termed SOLO systems).

By monitoring the embedded 700-hPa-filtered relative vorticity and 850-hPa wind convergence anomaly associated with these families along their trajectories, it is shown that the DUO generally have stronger dynamical structure and statistically have a longer lifetime than the SOLO ones. It is suggested that the differences between them may be due to the presence of the previous intense downstream trough in DUO cases, enhancing the low-level convergence behind them. Moreover, a study of the relationship between system trajectories and tropical depressions occurring between the West African coast and 40°W showed that 90% of tropical depressions are identifiable from the West African coast in tracked systems, mostly in the DUO cases originating from the south zone of the AEJ.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Abdou Lahat Dieng, abdoulahat.dieng@ucad.edu.sn
Save