• Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and C. M. Wu, 2013: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 19771992, doi:10.1175/JAS-D-12-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., J. H. Jung, and C. M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 37313742, doi:10.5194/acp-11-3731-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., N. Semane, P. Lopez, J.-P. Charoureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, doi:10.1175/JAS-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, doi:10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., J. S. Kain, P. T. Marsh, J. Correia, M. Xue, and F. Kong, 2012: Forecasting tornado pathlengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts. Wea. Forecasting, 27, 10901113, doi:10.1175/WAF-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fowler, L. D., W. Skamarock, G. A. Grell, S. E. Freitas, and M. G. Duda, 2016: Analyzing the Grell–Freitas convection scheme from hydrostatic to nonhydrostatic scales within a global model. Mon. Wea. Rev., 144, 22852306, doi:10.1175/MWR-D-15-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerard, L., J. M. Piriou, R. Brožková, J. F. Geleyn, and D. Banciu, 2009: Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model. Mon. Wea. Rev., 137, 39603977, doi:10.1175/2009MWR2750.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., L. R. Reung, and J. McCaa, 1999: A comparison of three different modeling strategies for evaluating cloud and radiation parameterizations. Mon. Wea. Rev., 127, 19671984, doi:10.1175/1520-0493(1999)127<1967:ACOTDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomes, J. L., and S. C. Chou, 2010: Dependence of partitioning of model implicit and explicit precipitation on horizontal resolution. Meteor. Atmos. Phys., 106, 118, doi:10.1007/s00703-009-0050-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, doi:10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and H. L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, doi:10.1175/WAF-D-10-05038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., 2004: Comparison of heavy rainfall mechanisms in Korea and the central US. J. Meteor. Soc. Japan, 82, 14691479, doi:10.2151/jmsj.2004.1469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1998: Convective trigger function for a mass flux cumulus parameterization scheme. Mon. Wea. Rev., 126, 25992620, doi:10.1175/1520-0493(1998)126<2599:CTFFAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93, ES6ES9, doi:10.1175/2011BAMS3224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Jang, J. Lee, J. Dudhia, and W. Wang, 2013: The GRIMs shallow convection scheme. Proc. 14th Annual WRF User’s Workshop, Boulder, CO, NCAR. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2013/posters/p97.pdf.]

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, J., and S.-Y. Hong, 2014: Quantitative forecast experiment of a heavy rainfall event over Korea in a global model: Horizontal resolution versus lead time issues. Meteor. Atmos. Phys., 124, 113127, doi:10.1007/s00703-014-0312-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koo, M.-S., S.-Y. Hong, and J. Kim, 2009: An evaluation of the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) data over South Korea. Asia-Pac. J. Atmos. Sci., 45, 265282.

    • Search Google Scholar
    • Export Citation
  • Kuell, V., A. Gassmann, and A. Bott, 2007: Towards a new hybrid cumulus parametrization scheme for use in non-hydrostatic weather prediction models. Quart. J. Roy. Meteor. Soc., 133, 479490, doi:10.1002/qj.28.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 12321240, doi:10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., S.-Y. Hong, J.-H. Yoon, and J. Han, 2014: Simulation of the summer monsoon rainfall over East Asia using the NCEP GFS cumulus parameterization at different horizontal resolutions. Wea. Forecasting, 29, 11431154, doi:10.1175/WAF-D-13-00143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMillen, J. D., and W. J. Steenburgh, 2015: Impact of microphysics parameterizations on simulations of the 27 October 2010 Great Salt Lake–effect snowstorm. Wea. Forecasting, 30, 136152, doi:10.1175/WAF-D-14-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, J.-Y., Y.-A. Kwon, Y.-E. Choi, and I.-H. Park, 2014: A study on the characteristics of summer rainfall over South Korea in recent 5 years. Climate Res., 9, 269282, doi:10.14383/cri.2014.9.4.269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, H.-L., and W.-S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC Medium Range Forecast model. NMC Office Note 409, 40 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/phys_refs/CU_PHYS/Old_SAS.pdf.]

  • Pan, H.-L., Q. Liu, J. Han, and R. Sun, 2014: Extending the simplified Arakawa-Schubert scheme for meso-scale model applications. NCEP Office Note 479, 10 pp. [Available online at http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on479.pdf.]

  • Qiao, F., and X. Z. Liang, 2014: Effects of cumulus parameterizations on predictions of summer flood in the central United States. Climate Dyn., 45, 727744, doi:10.1007/s00382-014-2301-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Z. Liu, 2014: Convection-permitting forecasts initialized with continuously cycling limited-area 3DVAR, ensemble Kalman filter, and “hybrid” variational–ensemble data assimilation systems. Mon. Wea. Rev., 142, 716738, doi:10.1175/MWR-D-13-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-C., H.-L. Pan, and H.-H. Hsu, 2015: Impacts of the triggering function of cumulus parameterization on warm-season diurnal rainfall cycles at the atmospheric radiation measurement Southern Great Plains site. J. Geophys. Res. Atmos., 120, 10 68110 702, doi:10.1002/2015JD023337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Q., and F. H. Carr, 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125, 19311953, doi:10.1175/1520-0493(1997)125<1931:APCSFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., K. Alapaty, J. A. Herwehe, A. D. Del Genio, and D. Niyogi, 2016: Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) Model with an updated Kain–Fritsch scheme. Mon. Wea. Rev., 144, 833860, doi:10.1175/MWR-D-15-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 332 332 40
PDF Downloads 190 190 42

A Mass-Flux Cumulus Parameterization Scheme across Gray-Zone Resolutions

View More View Less
  • 1 Korea Institute of Atmospheric Prediction Systems, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

A method that enables a mass-flux cumulus parameterization scheme (CPS) to work seamlessly in various model grids across CPS gray-zone resolutions is proposed. The convective cloud-base mass flux, convective inhibition, and convective detrainment in the simplified Arakawa–Schubert (SAS) scheme are modified to be functions of the convective updraft fraction. The combination of two updraft fractions is used to modulate the cloud-base mass flux; the first one depends on the horizontal grid space and the other is a function of the grid-scale and convective vertical velocity. The convective inhibition and detrainment of hydrometeors are also modified to be a function of the grid-size-dependent convective updraft fraction.

A set of sensitivity experiments with the Weather Research and Forecasting (WRF) Model is conducted for a heavy rainfall case over South Korea. The results show that the revised SAS CPS outperforms the original SAS. At 3 and 1 km, the precipitation core over South Korea is well reproduced by the experiments with the revised SAS scheme. On the contrary, the simulated precipitation is widespread in the case of the original SAS experiment and there are multiple spurious cores when the CPS is removed at those resolutions. The modified mass flux at the cloud base is found to play a major role in organizing the grid-scale precipitation at the convective core. A 1-month simulation at 3 km confirms that the revised scheme produces slightly better summer monsoonal precipitation results as compared to the typical model setup without CPS.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author e-mail: Song-You Hong, songyou.hong@kiaps.org

Abstract

A method that enables a mass-flux cumulus parameterization scheme (CPS) to work seamlessly in various model grids across CPS gray-zone resolutions is proposed. The convective cloud-base mass flux, convective inhibition, and convective detrainment in the simplified Arakawa–Schubert (SAS) scheme are modified to be functions of the convective updraft fraction. The combination of two updraft fractions is used to modulate the cloud-base mass flux; the first one depends on the horizontal grid space and the other is a function of the grid-scale and convective vertical velocity. The convective inhibition and detrainment of hydrometeors are also modified to be a function of the grid-size-dependent convective updraft fraction.

A set of sensitivity experiments with the Weather Research and Forecasting (WRF) Model is conducted for a heavy rainfall case over South Korea. The results show that the revised SAS CPS outperforms the original SAS. At 3 and 1 km, the precipitation core over South Korea is well reproduced by the experiments with the revised SAS scheme. On the contrary, the simulated precipitation is widespread in the case of the original SAS experiment and there are multiple spurious cores when the CPS is removed at those resolutions. The modified mass flux at the cloud base is found to play a major role in organizing the grid-scale precipitation at the convective core. A 1-month simulation at 3 km confirms that the revised scheme produces slightly better summer monsoonal precipitation results as compared to the typical model setup without CPS.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author e-mail: Song-You Hong, songyou.hong@kiaps.org
Save