• Andrys, J., , T. J. Lyons, , and J. Kala, 2016: Evaluation of a WRF ensemble using GCM boundary conditions to quantify mean and extreme climate for the southwest of Western Australia (1970–1999). Int. J. Climatol., 36, 44064424, doi:10.1002/joc.4641.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M., , and R. A. Houze Jr., 1972: Analysis of the structure of precipitation patterns in New England. J. Appl. Meteor., 11, 926935, doi:10.1175/1520-0450(1972)011<0926:AOTSOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banacos, P. C., 2003: Short range prediction of banded precipitation associated with deformation and frontogenetical forcing. Preprints, 10th Conf. on Mesoscale Processes, Portland, OR, Amer. Meteor. Soc., P1.7. [Available online at https://ams.confex.com/ams/pdfpapers/62368.pdf.]

  • Benjamin, S. G., and et al. , 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1919: On the structure of moving cyclones. Geofys. Publ., 1 (2), 18.

  • Bjerknes, J., , and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3 (1), 318.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1983: Air motion and precipitation growth in a major snowstorm. Quart. J. Roy. Meteor. Soc., 109, 225242, doi:10.1002/qj.49710945911.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., , M. E. Hardman, , T. W. Harrold, , and C. W. Pardoe, 1973: The structure of rainbands within a midlatitude depression. Quart. J. Roy. Meteor. Soc., 99, 215231, doi:10.1002/qj.49709942002.

    • Search Google Scholar
    • Export Citation
  • Chan, D., , and H.-R. Cho, 1991: The dynamics of moist frontogenesis in a semi-geostrophic model. Atmos.–Ocean, 29, 85101, doi:10.1080/07055900.1991.9649394.

    • Search Google Scholar
    • Export Citation
  • Cunningham, J. G., , and S. E. Yuter, 2014: Instability characteristics of radar-derived mesoscale organization modes within cool season precipitation near Portland, Oregon. Mon. Wea. Rev., 142, 17381757, doi:10.1175/MWR-D-13-00133.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1996: A multi-layer soil temperature model for MM5. Preprints, Sixth Annual PSU/NCAR Mesoscale Model Users' Workshop, Boulder CO, NCAR, 49–50. [Available online at http://www2.mmm.ucar.edu/wrf/users/phys_refs/LAND_SURFACE/5_layer_thermal.pdf.]

  • Emanuel, K. A., 1985: Frontal circulations in the presence of small moist symmetric stability. J. Atmos. Sci., 42, 10621071, doi:10.1175/1520-0469(1985)042<1062:FCITPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , A. J. Heymsfield, , and A. Bansemer, 2006: A test of ice self-collection kernels using aircraft data. J. Atmos. Sci., 63, 651666, doi:10.1175/JAS3653.1.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., , and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, doi:10.5194/acp-14-5233-2014.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., , M. P. Langleben, , A. S. Dennis, , and B. A. Power, 1954: Radar evidence of a generating level for snow. J. Meteor., 11, 2026, doi:10.1175/1520-0469(1954)011<0020:REOAGL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, M., , R. M. Rauber, , M. K. Ramamurthy, , B. F. Jewett, , and J. A. Grim, 2007: Mesoscale dynamics of the trowal and warm-frontal regions of two continental winter cyclones. Mon. Wea. Rev., 135, 16471670, doi:10.1175/MWR3377.1.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., , and P. V. Hobbs, 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. II: Warm frontal clouds. J. Atmos. Sci., 37, 597611, doi:10.1175/1520-0469(1980)037<0597:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., , A. Bansemer, , C. Schmitt, , C. Twohy, , and M. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 982, doi:10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., 1979: Doppler study of a warm frontal region. J. Atmos. Sci., 36, 20932107, doi:10.1175/1520-0469(1979)036<2093:DRSOAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , and P. V. Hobbs, 1982: Organization and structure of precipitating cloud systems. Advances in Geophysics, Vol. 24, Academic Press, 225–315, doi:10.1016/S0065-2687(08)60521-X.

  • Houze, R. A., Jr., , P. V. Hobbs, , K. R. Biswas, , and W. M. Davis, 1976: Mesoscale rainbands in extratropical cyclones. Mon. Wea. Rev., 104, 868879, doi:10.1175/1520-0493(1976)104<0868:MRIEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , S. A. Rutledge, , T. J. Matejka, , and P. V. Hobbs, 1981: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. III: Air motions and precipitation growth in a warm-frontal rainband. J. Atmos. Sci., 38, 639649, doi:10.1175/1520-0469(1981)038<0639:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsie, E.-Y., , R. A. Anthes, , and D. Keyser, 1984: Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci., 41, 25812594, doi:10.1175/1520-0469(1984)041<2581:NSOFIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hudak, D. R., , R. E. Stewart, , A. D. Thomson, , and R. List, 1996: Warm frontal structure in association with a rapidly deepening extratropical cyclone. Atmos.–Ocean, 34, 103132, doi:10.1080/07055900.1996.9649559.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., , J. S. Delamere, , E. J. Mlawer, , M. W. Shephard, , S. A. Clough, , and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Igel, A. L., , and S. C. Van den Heever, 2014: The role of latent heating in warm frontogenesis. Quart. J. Roy. Meteor. Soc., 140, 139150, doi:10.1002/qj.2118.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. A., 1990: The step-mountain coordinate: Physics package. Mon. Wea. Rev., 118, 14291443, doi:10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., , B. F. Jewett, , R. M. Rauber, , G. M. McFarquhar, , R. M. Rasmussen, , L. Xue, , C. Liu, , and G. Thompson, 2016: Dynamics of cloud-top generating cells in winter cyclones. Part I: Idealized simulations in the context of field observations. J. Atmos. Sci., 73, 15071527, doi:10.1175/JAS-D-15-0126.1.

    • Search Google Scholar
    • Export Citation
  • Kenyon, J. S., 2013: The motion of mesoscale snowbands in northeast U.S. winter storms. M.S. thesis, Dept. of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 108 pp. [Available online at http://www.atmos.albany.edu/student/jkenyon/Kenyon_thesis.pdf.]

  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. J. Oper. Meteor., 1, 243264, doi:10.15191/nwajom.2013.0120.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and K. K. Tung, 1976: Banded convective activity and ducted gravity waves. Mon. Wea. Rev., 104, 16021617, doi:10.1175/1520-0493(1976)104<1602:BCAADG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., , and P. V. Hobbs, 1987: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XIII: Structure of a warm front. J. Atmos. Sci., 44, 22902309, doi:10.1175/1520-0469(1987)044<2290:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., 1953: Precipitation trajectories and patterns. J. Meteor., 10, 2529, doi:10.1175/1520-0469(1953)010<0025:PTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 1998: The structure and evolution of a continental winter cyclone. Part II: Frontal forcing of an extreme snow event. Mon. Wea. Rev., 126, 329348, doi:10.1175/1520-0493(1998)126<0329:TSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matejka, T. J., , R. A. Houze Jr., , and P. V. Hobbs, 1980: Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones. Quart. J. Roy. Meteor. Soc., 106, 2956, doi:10.1002/qj.49710644704.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and et al. , 2011: Indirect and Semi-Direct Aerosol Campaign: The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201, doi:10.1175/2010BAMS2935.1.

    • Search Google Scholar
    • Export Citation
  • Moore, J. T., , C. E. Graves, , S. Ng, , and J. L. Smith, 2005: A process-oriented methodology toward understanding the organization of an extensive mesoscale snowband: A diagnostic case study of 4–5 December 1999. Wea. Forecasting, 20, 3550, doi:10.1175/WAF-829.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, doi:10.1175/JAS-D-14-0065.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , M. A. Shapiro, , and L. S. Fedor, 1993: The life cycle of an extratropical marine cyclone. Part II: Mesoscale structure and diagnostics. Mon. Wea. Rev., 121, 21772199, doi:10.1175/1520-0493(1993)121<2177:TLCOAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicosia, D. J., , and R. H. Grumm, 1999: Mesoscale band formation in three major northeastern United States snowstorms. Wea. Forecasting, 14, 346368, doi:10.1175/1520-0434(1999)014<0346:MBFITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Novak, D., , B. A. Colle, , and S. Yuter, 2008: High-resolution observations and model simulations of the life cycle of an intense mesoscale snowband. Mon. Wea. Rev., 136, 14331456, doi:10.1175/2007MWR2233.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D., , B. A. Colle, , and R. McTaggart-Cowan, 2009: The role of moist processes in the formation and evolution of mesoscale snowbands within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 137, 26622686, doi:10.1175/2009MWR2874.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D., , B. A. Colle, , and A. R. Aiyyer, 2010: Evolution of mesoscale precipitation band environments within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 138, 23542374, doi:10.1175/2010MWR3219.1.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geophys. Publ., 11 (6), 127.

  • Plummer, D. M., , G. M. McFarquhar, , R. M. Rauber, , B. F. Jewett, , and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, doi:10.1175/JAS-D-14-0100.1.

    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., , G. M. McFarquhar, , R. M. Rauber, , B. F. Jewett, , and D. C. Leon, 2015: Microphysical properties of convectively generated fall streaks within the stratiform comma head region of continental winter cyclones. J. Atmos. Sci., 72, 24652483, doi:10.1175/JAS-D-14-0354.1.

    • Search Google Scholar
    • Export Citation
  • Rauber, R., and et al. , 2014: Stability and charging characteristics of the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15591582, doi:10.1175/JAS-D-13-0253.1.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., , and G. M. Lackmann, 2004: An investigation of the influence of latent heat release on cold-frontal motion. Mon. Wea. Rev., 132, 28642881, doi:10.1175/MWR2827.1.

    • Search Google Scholar
    • Export Citation
  • Roach, W., , and M. Hardman, 1975: Mesoscale air motions derived from wind finding dropsonde data: The warm front and rainbands of 18 January 1971. Quart. J. Roy. Meteor. Soc., 101, 437462, doi:10.1002/qj.49710142904.

    • Search Google Scholar
    • Export Citation
  • Rosenow, A. A., , D. M. Plummer, , R. M. Rauber, , G. M. McFarquhar, , B. F. Jewett, , and D. Leon, 2014: Vertical velocity and physical structure of generating cells and convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15381558, doi:10.1175/JAS-D-13-0249.1.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., , and P. V. Hobbs, 1983: The mesoscale and microscale structure and organizations of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, doi:10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., , and P. N. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732, doi:10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., , D. S. Arndt, , D. J. Stensrud, , and J. W. Hanna, 2004: Snowbands during the cold-air outbreak of 23 January 2003. Mon. Wea. Rev., 132, 827842, doi:10.1175/1520-0493(2004)132<0827:SDTCOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Skofronick-Jackson, G., and et al. , 2015: Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For measurement’s sake, let it snow. Bull. Amer. Meteor. Soc., 96, 17191741, doi:10.1175/BAMS-D-13-00262.1.

    • Search Google Scholar
    • Export Citation
  • Stark, D., , B. A. Colle, , and S. E. Yuter, 2013: Observed microphysical evolution for two East Coast winter storms and the associated snow bands. Mon. Wea. Rev., 141, 20372057, doi:10.1175/MWR-D-12-00276.1.

    • Search Google Scholar
    • Export Citation
  • Syrett, W. J., , B. A. Albrecht, , and E. E. Clothiaux, 1995: Vertical cloud structure in a midlatitude cyclone from a 94-GHz radar. Mon. Wea. Rev., 123, 33933407, doi:10.1175/1520-0493(1995)123<3393:VCSIAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., , and R. E. Stewart, 1997: Effects of melting on frontogenesis. J. Atmos. Sci., 54, 689702, doi:10.1175/1520-0469(1997)054<0689:EOMOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., , and K. A. Emanuel, 1985: Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sci., 42, 18091824, doi:10.1175/1520-0469(1985)042<1809:FITPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., , D. M. Schultz, , A. V. Ryzhkov, , and R. L. Holle, 2001: Multiscale structure and evolution of an Oklahoma winter precipitation event. Mon. Wea. Rev., 129, 486501, doi:10.1175/1520-0493(2001)129<0486:MSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R., , and B. Bosart, 2001: Airborne radar observations of a warm front during FASTEX. Mon. Wea. Rev., 129, 254274, doi:10.1175/1520-0493(2001)129<0254:AROOAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wexler, R., , A. C. Chmela, , and G. M. Armstrong, 1967: Wind field observations by Doppler radar in a New England snowstorm. Mon. Wea. Rev., 95, 929935, doi:10.1175/1520-0493(1967)095<0929:WFOBDR>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wiesmueller, J. L., , and S. M. Zubrick, 1998: Evaluation and application of conditional symmetric instability, equivalent potential vorticity, and frontogenetical forcing in an operational forecasting environment. Wea. Forecasting, 13, 84101, doi:10.1175/1520-0434(1998)013<0084:EAAOCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., 1989: Frontal circulations in the presence of small viscous moist symmetric stability and weak forcing. Quart. J. Roy. Meteor. Soc., 115, 13251353, doi:10.1002/qj.49711549008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 89 89 11
PDF Downloads 70 70 12

Structure and Evolution of a Warm Frontal Precipitation Band during the GPM Cold Season Precipitation Experiment (GCPEx)

View More View Less
  • 1 School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York
  • | 2 Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama
  • | 3 Earth Science Office, NASA Marshall Space Flight Center, Huntsville, Alabama
© Get Permissions
Restricted access

Abstract

This paper describes the evolution of an intense precipitation band associated with a relatively weak warm front observed during the Global Precipitation Measurement (GPM) Mission Cold Season Precipitation Experiment (GCPEx) over southern Ontario, Canada, on 18 February 2012. The warm frontal precipitation band went through genesis, maturity, and decay over a 5–6-h period. The Weather Research and Forecasting (WRF) Model nested down to 1-km grid spacing was able to realistically predict the precipitation band evolution, albeit somewhat weaker and slightly farther south than observed. Band genesis began in an area of precipitation with embedded convection to the north of the warm front in a region of weak frontogenetical forcing at low levels and a weakly positive to slightly negative moist potential vorticity (MPV*) from 900 to 650 hPa. A midlevel dry intrusion helped reduce the midlevel stability, while the precipitation band intensified as the low-level frontogenesis intensified in a sloping layer with the warm front. Aggregates of unrimed snow occurred within the band during early maturity, while more supercooled water and graupel occurred as the upward motion increased because of the frontogenetical circulation. As the low-level cyclone moved east, the low-level deformation decreased and the column stabilized for vertical and slantwise ascent, and the warm frontal band weakened. A WRF experiment turning off latent heating resulted in limited precipitation band development and a weaker warm front, while turning off latent cooling only intensified the frontal precipitation band as additional midlevel instability compensated for the small decrease in frontogenetical forcing.

Corresponding author address: Dr. Brian A. Colle, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000. E-mail: brian.colle@stonybrook.edu

Abstract

This paper describes the evolution of an intense precipitation band associated with a relatively weak warm front observed during the Global Precipitation Measurement (GPM) Mission Cold Season Precipitation Experiment (GCPEx) over southern Ontario, Canada, on 18 February 2012. The warm frontal precipitation band went through genesis, maturity, and decay over a 5–6-h period. The Weather Research and Forecasting (WRF) Model nested down to 1-km grid spacing was able to realistically predict the precipitation band evolution, albeit somewhat weaker and slightly farther south than observed. Band genesis began in an area of precipitation with embedded convection to the north of the warm front in a region of weak frontogenetical forcing at low levels and a weakly positive to slightly negative moist potential vorticity (MPV*) from 900 to 650 hPa. A midlevel dry intrusion helped reduce the midlevel stability, while the precipitation band intensified as the low-level frontogenesis intensified in a sloping layer with the warm front. Aggregates of unrimed snow occurred within the band during early maturity, while more supercooled water and graupel occurred as the upward motion increased because of the frontogenetical circulation. As the low-level cyclone moved east, the low-level deformation decreased and the column stabilized for vertical and slantwise ascent, and the warm frontal band weakened. A WRF experiment turning off latent heating resulted in limited precipitation band development and a weaker warm front, while turning off latent cooling only intensified the frontal precipitation band as additional midlevel instability compensated for the small decrease in frontogenetical forcing.

Corresponding author address: Dr. Brian A. Colle, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000. E-mail: brian.colle@stonybrook.edu
Save