• Ajaya Mohan, R., , and B. N. Goswami, 2003: Potential predictability of the Asian summer monsoon on monthly and seasonal time scales. Meteor. Atmos. Phys., 84, 83100, doi:10.1007/s00703-002-0576-4.

    • Search Google Scholar
    • Export Citation
  • Allen, M., , and A. Robertson, 1996: Distinguishing modulated oscillations from coloured noise in multivariate datasets. Climate Dyn., 12, 775784, doi:10.1007/s003820050142.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., , and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, doi:10.1007/s003820100161.

    • Search Google Scholar
    • Export Citation
  • Broomhead, D. S., , and G. P. King, 1986: Extracting qualitative dynamics from experimental data. Physica D, 20, 217236, doi:10.1016/0167-2789(86)90031-X.

    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., , and R. S. Nanjundiah, 2012: Space–time scales of northward propagation of convection during boreal summer. Mon. Wea. Rev., 140, 38573866, doi:10.1175/MWR-D-12-00088.1.

    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., , and R. S. Nanjundiah, 2014: Role of orography in modulating space–time scales of convection over South Asia. Theor. Appl. Climatol., 116, 549564, doi:10.1007/s00704-013-0963-4.

    • Search Google Scholar
    • Export Citation
  • Chatterjee, P., , and B. N. Goswami, 2004: Structure, genesis and scale selection of the tropical quasi-biweekly mode. Quart. J. Roy. Meteor. Soc., 130, 11711194, doi:10.1256/qj.03.133.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., , and J.-M. Chen, 1993: The 10–20-day mode of the 1979 Indian monsoon: Its relation with the time variation of monsoon rainfall. Mon. Wea. Rev., 121, 24652482, doi:10.1175/1520-0493(1993)121<2465:TDMOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., , and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Climate, 20, 37513767, doi:10.1175/JCLI4221.1.

    • Search Google Scholar
    • Export Citation
  • Francis, P. A., , and S. Gadgil, 2013: A note on new indices for the equatorial Indian Ocean oscillation. J. Earth Syst. Sci., 122, 10051011, doi:10.1007/s12040-013-0320-0.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429467, doi:10.1146/annurev.earth.31.100901.141251.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and et al. , 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40, 1003, doi:10.1029/2000RG000092.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2005: South Asian monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, K. M. Lau and D. E. Waliser, Eds., Springer Praxis, 19–61.

  • Goswami, B. N., , and R. Ajaya Mohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 11801198, doi:10.1175/1520-0442(2001)014<1180:IOAIVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Groth, A., , and M. Ghil, 2011: Multivariate singular spectrum analysis and the road to phase synchronization. Phys. Rev. E, 84, 036206, doi:10.1103/PhysRevE.84.036206.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., , and B. Wang, 2006: Large-scale atmospheric dynamics. The Asian Monsoon, Springer, 357–415, doi:10.1007/3-540-37722-0_9.

  • Hoyos, C. D., , and P. J. Webster, 2007: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Climate, 20, 44024424, doi:10.1175/JCLI4252.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jian, J., , P. J. Webster, , and C. D. Hoyos, 2009: Large-scale controls on Ganges and Brahmaputra River discharge on intraseasonal and seasonal time-scales. Quart. J. Roy. Meteor. Soc., 135, 353370, doi:10.1002/qj.384.

    • Search Google Scholar
    • Export Citation
  • Jiang, N., , J. D. Neelin, , and M. Ghil, 1995: Quasi-quadrennial and quasi-biennial variability in the equatorial Pacific. Climate Dyn., 12, 101112, doi:10.1007/BF00223723.

    • Search Google Scholar
    • Export Citation
  • Julian, P., , and R. Madden, 1981: Comments on a paper by T. Yasunari: A quasistationary appearance of 30-to 40-day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 59, 435437.

    • Search Google Scholar
    • Export Citation
  • Karmakar, N., , A. Chakraborty, , and R. S. Nanjundiah, 2015: Decreasing intensity of monsoon low-frequency intraseasonal variability over India. Environ. Res. Lett., 10, 054018, doi:10.1088/1748-9326/10/5/054018.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., , and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 29232942, doi:10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and B. Wang, 2009: Global perspective of the quasi-biweekly oscillation. J. Climate, 22, 13401359, doi:10.1175/2008JCLI2368.1.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., , H. Weller, , J. M. Slingo, , and P. M. Inness, 2008: The intraseasonal variability of the Indian summer monsoon using TMI sea surface temperatures and ECMWF reanalysis. J. Climate, 21, 25192539, doi:10.1175/2007JCLI1850.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., , and J. Shukla, 2000: Intraseasonal and interannual variability of rainfall over India. J. Climate, 13, 43664377, doi:10.1175/1520-0442(2000)013<0001:IAIVOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., , and J. Shukla, 2007: Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall. J. Climate, 20, 320, doi:10.1175/JCLI3981.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and H. Bhalme, 1976: Oscillations of a monsoon system. Part I: Observational aspects. J. Atmos. Sci., 33, 19371954, doi:10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , P. Jayakumar, , J. Sheng, , N. Surgi, , and A. Kumar, 1985: Divergent circulations on the 30 to 50 day time scale. J. Atmos. Sci., 42, 364375, doi:10.1175/1520-0469(1985)042<0364:DCOTTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , A. Chakraborty, , R. Krishnamurti, , W. K. Dewar, , and C. A. Clayson, 2007: Passage of intraseasonal waves in the subsurface oceans. Geophys. Res. Lett., 34, L14712, doi:10.1029/2007GL030496.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and P. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 13541367, doi:10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., , and P. J. Webster, 2001: Interannual variations of the intraseasonal oscillation in the South Asian summer monsoon region. J. Climate, 14, 29102922, doi:10.1175/1520-0442(2001)014<2910:IVOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., , B. Wang, , M. C. Wheeler, , X. Fu, , D. E. Waliser, , and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, doi:10.1007/s00382-012-1544-4.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., , J. C. Fyfe, , M. H. Ambaum, , D. B. Stephenson, , and G. R. North, 2009: Empirical orthogonal functions: The medium is the message. J. Climate, 22, 65016514, doi:10.1175/2009JCLI3062.1.

    • Search Google Scholar
    • Export Citation
  • Moron, V., , R. Vautard, , and M. Ghil, 1998: Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Climate Dyn., 14, 545569, doi:10.1007/s003820050241.

    • Search Google Scholar
    • Export Citation
  • Moron, V., , A. Robertson, , and M. Ghil, 2012: Impact of the modulated annual cycle and intraseasonal oscillation on daily-to-interannual rainfall variability across monsoonal India. Climate Dyn., 38, 24092435, doi:10.1007/s00382-011-1253-4.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1976: Analysis of summer monsoon fluctuations over India. J. Meteor. Soc. Japan, 54 (1), 1531.

  • Plaut, G., , and R. Vautard, 1994: Spells of low-frequency oscillations and weather regimes in the Northern Hemisphere. J. Atmos. Sci., 51, 210236, doi:10.1175/1520-0469(1994)051<0210:SOLFOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., 2001: Prediction of Indian summer monsoon: Status, problems and prospects. Curr. Sci., 81 (11), 14511458.

  • Rajeevan, M., , S. Gadgil, , and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci., 119, 229247, doi:10.1007/s12040-010-0019-4.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , T. M. Smith, , C. Liu, , D. B. Chelton, , K. S. Casey, , and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., , and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 18401853, doi:10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Singh, S., , R. Kripalani, , and D. Sikka, 1992: Interannual variability of the Madden–Julian oscillations in Indian summer monsoon rainfall. J. Climate, 5, 973978, doi:10.1175/1520-0442(1992)005<0973:IVOTMJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and et al. , 2001: Dynamical seasonal predictability of the Asian summer monsoon. Mon. Wea. Rev., 129, 22262248, doi:10.1175/1520-0493(2001)129<2226:DSPOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., , J. M. Slingo, , and H. Annamalai, 2000: Predictability and the relationship between subseasonal and interannual variability during the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 126, 25452574, doi:10.1002/qj.49712656810.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., , P. Yiou, , and M. Ghil, 1992: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D, 58, 95126, doi:10.1016/0167-2789(92)90103-T.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and C. Hoyos, 2004: Prediction of monsoon rainfall and river discharge on 15–30-day time scales. Bull. Amer. Meteor. Soc., 85, 1745, doi:10.1175/BAMS-85-11-1745.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , V. O. Magaña, , T. N. Palmer, , J. Shukla, , R. A. Tomas, , M. Yanai, , and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, doi:10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57 (3), 227242.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1980: A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58, 225229.

    • Search Google Scholar
    • Export Citation
  • Yoo, J. H., , A. W. Robertson, , and I.-S. Kang, 2010: Analysis of intraseasonal and interannual variability of the Asian summer monsoon using a hidden Markov model. J. Climate, 23, 54985516, doi:10.1175/2010JCLI3473.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 135 135 10
PDF Downloads 127 127 11

Space–Time Evolution of the Low- and High-Frequency Intraseasonal Modes of the Indian Summer Monsoon

View More View Less
  • 1 Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India
  • | 2 Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, and Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, India
© Get Permissions
Restricted access

Abstract

In this study, rainfall estimates by the Tropical Rainfall Measuring Mission are used to understand the spatiotemporal structures of convection in the intraseasonal time scale and their intensity during the boreal summer over South Asia. A quantitative analysis on how these intraseasonal modes modulate the central Indian rainfall is also provided.

Two dominant modes of variability with periodicities of 10–20 and 20–60 days are found, with the latter strongly modulated by sea surface temperature. The 20–60-day mode shows northward propagation from the equatorial Indian Ocean linked with eastward-propagating modes of convective systems over the tropics. The 10–20-day mode shows a complex space–time structure with a northwestward-propagating anomalous pattern emanating from the Indonesian coast. This pattern is found to be interacting with a structure emerging from higher latitudes propagating southeastward, the development of which is attributed to the vertical shear of the zonal wind. The two modes exhibit profound variability in their intensity on the interannual time scale and they contribute a comparable amount to the daily rainfall variability in a season. The intensity of the 20–60 and 10–20-day modes shows a significantly strong inverse and direct relationship with the all-India June–September rainfall, respectively.

This study establishes that the probability of the occurrence of substantial rainfall over central India increases significantly if the two intraseasonal modes simultaneously exhibit positive anomalies over the region. The results presented in this paper will provide a pathway to understand, using observations and numerical model simulations, intraseasonal variability and its relative contribution to the Indian summer monsoon. It can also be used for model evaluation.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0075.s1.

Corresponding author address: Arindam Chakraborty, Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560012, India. E-mail: arch@caos.iisc.ernet.in

Abstract

In this study, rainfall estimates by the Tropical Rainfall Measuring Mission are used to understand the spatiotemporal structures of convection in the intraseasonal time scale and their intensity during the boreal summer over South Asia. A quantitative analysis on how these intraseasonal modes modulate the central Indian rainfall is also provided.

Two dominant modes of variability with periodicities of 10–20 and 20–60 days are found, with the latter strongly modulated by sea surface temperature. The 20–60-day mode shows northward propagation from the equatorial Indian Ocean linked with eastward-propagating modes of convective systems over the tropics. The 10–20-day mode shows a complex space–time structure with a northwestward-propagating anomalous pattern emanating from the Indonesian coast. This pattern is found to be interacting with a structure emerging from higher latitudes propagating southeastward, the development of which is attributed to the vertical shear of the zonal wind. The two modes exhibit profound variability in their intensity on the interannual time scale and they contribute a comparable amount to the daily rainfall variability in a season. The intensity of the 20–60 and 10–20-day modes shows a significantly strong inverse and direct relationship with the all-India June–September rainfall, respectively.

This study establishes that the probability of the occurrence of substantial rainfall over central India increases significantly if the two intraseasonal modes simultaneously exhibit positive anomalies over the region. The results presented in this paper will provide a pathway to understand, using observations and numerical model simulations, intraseasonal variability and its relative contribution to the Indian summer monsoon. It can also be used for model evaluation.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0075.s1.

Corresponding author address: Arindam Chakraborty, Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560012, India. E-mail: arch@caos.iisc.ernet.in

Supplementary Materials

    • Supplemental Materials (PDF 610.21 KB)
Save