• Barlage, M., and et al. , 2010: Noah land model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res., 115, D22101, doi:10.1029/2009JD013470.

    • Search Google Scholar
    • Export Citation
  • Barton, N. P., , S. A. Klein, , J. S. Boyle, , and Y. Y. Zhang, 2012: Arctic synoptic regimes: Comparing domain-wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics. J. Geophys. Res., 117, D15205, doi:10.1029/2012JD017589.

    • Search Google Scholar
    • Export Citation
  • Birch, C. E., and et al. , 2012: Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies. Atmos. Chem. Phys., 12, 34193435, doi:10.5194/acp-12-3419-2012.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , K. M. Hines, , and L.-S. Bai, 2009: Development and testing of Polar WRF: 2. Arctic Ocean. J. Geophys. Res., 114, D08122, doi:10.1029/2008JD010300.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , F. O. Otieno, , K. Hines, , K. Manning, , and E. Shilo, 2013: Comprehensive evaluation of Polar Weather Research and Forecasting Model performance in the Antarctic. J. Geophys. Res., 118, 274292, doi:10.1029/2012JD018139.

    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., , M. E. Higgins, , and M. W. Seefeldt, 2011: Performance of the Weather Research and Forecasting (WRF) Model for month-long pan-Arctic simulations. Mon. Wea. Rev., 139, 34693488, doi:10.1175/MWR-D-10-05065.1.

    • Search Google Scholar
    • Export Citation
  • Cesana, G., , J. E. Kay, , H. Chepfer, , J. M. English, , and G. de Boer, 2012: Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP. Geophys. Res. Lett., 39, L20804, doi:10.1029/2012GL053385.

    • Search Google Scholar
    • Export Citation
  • Chapman, W. L., , and J. E. Walsh, 2007: Simulations of Arctic temperature and pressure by global coupled models. J. Climate, 20, 609632, doi:10.1175/JCLI4026.1.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., , M. W. Shephard, , E. J. Mlawer, , J. S. Delamere, , M. J. Iacono, , K. Cady-Pereira, , S. Boukabara, , and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, doi:10.1016/j.jqsrt.2004.05.058.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., , W. B. Rossow, , D. Randall, , and J. L. Schramm, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9, 17311764, doi:10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Boer, G., , W. Chapman, , J. E. Kay, , B. Medeiros, , M. D. Shupe, , S. Vavrus, , and J. Walsh, 2012: A characterization of the present-day Arctic atmosphere in CCSM4. J. Climate, 25, 26762695, doi:http://dx.doi.org//10.1175/JCLI-D-11-00228.1.

    • Search Google Scholar
    • Export Citation
  • de Boer, G., and et al. , 2014: Near-surface meteorology during the Arctic Cloud Ocean Study (ASCOS): Evaluation of reanalyses and global climate models. Atmos. Chem. Phys., 14, 427445, doi:10.5194/acp-14-427-2014.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., , and S. G. Warren, 2010: Interannual variations of Arctic cloud types in relation to sea ice. J. Climate, 23, 42164232, doi:10.1175/2010JCLI3492.1.

    • Search Google Scholar
    • Export Citation
  • Ebert, E., , and J. A. Curry, 1993: An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J. Geophys. Res., 98, 10 08510 109, doi:10.1029/93JC00656.

    • Search Google Scholar
    • Export Citation
  • English, J. M., , J. E. Kay, , A. Gettelman, , X. Liu, , Y. Wang, , Y. Zhang, , and H. Chepfer, 2014: Contributions of clouds, surface albedos, and mixed-phase ice nucleation schemes to Arctic radiation biases in CAM5. J. Climate, 27, 51745197, doi:10.1175/JCLI-D-13-00608.1.

    • Search Google Scholar
    • Export Citation
  • Forbes, R. M., , and M. Ahlgrimm, 2014: On the representation of high-latitude boundary layer mixed-phase cloud in the ECMWF global model. Mon. Wea. Rev., 142, 34253445, doi:10.1175/MWR-D-13-00325.1.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , and E. Hunter, 2006: New insight into the disappearing Arctic sea ice. Eos, Trans. Amer. Geophys. Union, 87, 509511, doi:10.1029/2006EO460001.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , D. M. White, , J. J. Cassano, , W. J. Gutowski Jr., , L. D. Hinzman, , M. M. Holland, , M. A. Steele, , and C. J. Vörösmarty, 2009: An Arctic hydrologic system in transition: Feedbacks and impacts on terrestrial, marine, and human life. J. Geophys. Res., 114, G04019, doi:10.1029/2008JG000902.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and et al. , 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.

    • Search Google Scholar
    • Export Citation
  • Glisan, J. M., , W. J. Gutowski, , J. J. Cassano, , and M. E. Higgins, 2013: Effects of spectral nudging in WRF on Arctic temperature and precipitation simulations. J. Climate, 26, 39853999, doi:10.1175/JCLI-D-12-00318.1.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. R., , and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33, 629643, doi:10.1007/s00382-009-0535-6.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., , and D. H. Bromwich, 2008: Development and testing of Polar Weather Research and Forecasting (WRF) Model. Part I: Greenland Ice Sheet meteorology. Mon. Wea. Rev., 136, 19711989, doi:10.1175/2007MWR2112.1.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., , D. H. Bromwich, , L.-S. Bai, , M. Barlage, , and A. S. Slater, 2011: Development and testing of Polar Weather Research and Forecasting Model. Part III: Arctic land. J. Climate, 24, 2648, doi:10.1175/2010JCLI3460.1.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., , D. H. Bromwich, , L. Bai, , C. M. Bitz, , J. G. Powers, , and K. W. Manning, 2015: Sea ice enhancements to Polar WRF. Mon. Wea. Rev., 143, 23632385, doi:10.1175/MWR-D-14-00344.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., , D. M. W. Frierson, , and J. E. Kay, 2011: Coupling between Arctic feedbacks and changes in poleward energy transport. Geophys. Res. Lett., 38, L17704, doi:10.1029/2011GL048546.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., , C. W. Fairall, , M. D. Shupe, , P. O. G. Persson, , E. L Andreas, , P. S. Guest, , and R. E. Moritz, 2002: An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res., 107, 8039, doi:10.1029/2000JC000439.

    • Search Google Scholar
    • Export Citation
  • Jeffries, M. O., , and J. Richter-Menge, 2015: The Arctic [in “State of the Climate in 2014”]. Bull. Amer. Meteor. Soc., 96 (7), ES127ES148, doi:10.1175/BAMS-D-14-00134.1.

    • Search Google Scholar
    • Export Citation
  • Karlsson, J., , and G. Svensson, 2011: The simulation of Arctic clouds and their influence on the winter surface temperature in present-day climate in the CMIP3 multi-model dataset. Climate Dyn., 36, 623635, doi:10.1007/s00382-010-0758-6.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., , and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, doi:10.1029/2009JD011773.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., , T. L’Ecuyer, , A. Gettelman, , G. Stephens, , and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Key, J. R., , X. Wang, , J. C. Stoeve, , and C. Fowler, 2001: Estimating the cloudy-sky albedo of sea ice and snow from space. J. Geophys. Res., 106, 12 48912 497, doi:10.1029/2001JD900069.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and et al. , 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment: Part I. Single-layer cloud. Quart. J. Roy. Meteor. Soc., 135, 9791002, doi:10.1002/qj.416.

    • Search Google Scholar
    • Export Citation
  • Kupiszewski, P., and et al. , 2013: Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer. Atmos. Chem. Phys., 13, 12 40512 431, doi:10.5194/acp-13-12405-2013.

    • Search Google Scholar
    • Export Citation
  • Leck, C., , and E. Svensson, 2015: Importance of aerosol composition and mixing state for cloud droplet activation over the Arctic pack ice in summer. Atmos. Chem. Phys., 15, 25452568, doi:10.5194/acp-15-2545-2015.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., , and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, doi:10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., , J. Zhang, , A. Schweiger, , M. Steele, , and H. Stern, 2009: Arctic sea ice retreat in 2007 follows thinning trend. J. Climate, 22, 165176, doi:10.1175/2008JCLI2521.1.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and et al. , 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709739, doi:10.5194/gmd-5-709-2012.

    • Search Google Scholar
    • Export Citation
  • Lobl, E., 2001: Joint Advanced Microwave Scanning Radiometer (AMSR) Science Team meeting. Earth Observer, Vol. 13, No. 13, EOS Project Science Office, Greenbelt, MD, 3–9. [Available online at http://www.acrim.com/Reference%20Files/Earth%20Observer_may_jun01.pdf.]

  • Luo, Y., , K.-M. Xu, , H. Morrison, , and G. McFarquhar, 2008: Arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity to microphysics parameterizations. J. Atmos. Sci., 65, 12851303, doi:10.1175/2007JAS2467.1.

    • Search Google Scholar
    • Export Citation
  • Martin, M., , R. Y.-W. Chang, , B. Sierau, , S. Sjogren, , E. Swietlicki, , J. P. D. Abbatt, , C. Leck, , and U. Lohmann, 2011: Cloud condensation nuclei closure study on summertime Arctic aerosol. Atmos. Chem. Phys., 11, 11 33511 350, doi:10.5194/acp-11-11335-2011.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and et al. , 2011: An Arctic CCN-limited cloud-aerosol regime. Atmos. Chem. Phys., 11, 165173, doi:10.5194/acp-11-165-2011.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and et al. , 2011: Indirect and Semi-Direct Aerosol Campaign (ISDAC): The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201, doi:10.1175/2010BAMS2935.1.

    • Search Google Scholar
    • Export Citation
  • McInnes, K. L., , and J. A. Curry, 1995: Modeling the mean and turbulent structure of the summertime Arctic cloudy boundary layer. Bound.-Layer Meteor., 73, 125143, doi:10.1007/BF00708933.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , J. A. Curry, , and V. I. Khvorostyanov, 2005: A new double-moment microphysics scheme for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , J. O. Pinto, , J. A. Curry, , and G. M. McFarquhar, 2008: Sensitivity of modeled Arctic mixed-phase stratocumulus to cloud condensation and ice nuclei over regionally varying surface conditions. J. Geophys. Res., 113, D05203, doi:10.1029/2007JD008729.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , G. Thompson, , and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , G. de Boer, , G. Feingold, , J. Harrington, , M. D. Shupe, , and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, doi:10.1038/ngeo1332.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Park, S., , C. S. Bretherton, , and P. J. Rasch, 2014: Integrating cloud processes in the Community Atmosphere Model, version 5. J. Climate, 27, 68216856, doi:10.1175/JCLI-D-14-00087.1.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., , T. C. Grenfell, , B. Light, , and P. V. Hobb, 2002: Seasonal evolution of Arctic sea ice albedo. J. Geophys. Res., 107, 8044, doi:10.1029/2000JC000438.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., , K. W. Manning, , D. H. Bromwich, , J. J. Cassano, , and A. M. Cayette, 2012: A decade of Antarctic science support through AMPS. Bull. Amer. Meteor. Soc., 93, 16991712, doi:10.1175/BAMS-D-11-00186.1.

    • Search Google Scholar
    • Export Citation
  • Randall, D., and et al. , 1998: Status of and outlook for large-scale modeling of atmosphere–ice–ocean interactions in the Arctic. Bull. Amer. Meteor. Soc., 79, 197219, doi:10.1175/1520-0477(1998)079<0197:SOAOFL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, A., and et al. , 2015: Simulating transient ice–ocean Ekman transport in the Regional Arctic System Model and Community Earth System Model. Ann. Glaciol., 56, doi:10.3189/2015AoG69A760.

    • Search Google Scholar
    • Export Citation
  • Sedlar, J., , and M. D. Shupe, 2014: Characteristic nature of vertical motions observed in Arctic mixed-phase stratocumulus. Atmos. Chem. Phys., 14, 34613478, doi:10.5194/acp-14-3461-2014.

    • Search Google Scholar
    • Export Citation
  • Sedlar, J., and et al. , 2011: A transitioning Arctic surface energy budget: The impacts of solar zenith angle, surface albedo and cloud radiative forcing. Climate Dyn., 37, 16431660, doi:10.1007/s00382-010-0937-5.

    • Search Google Scholar
    • Export Citation
  • Sedlar, J., , M. D. Shupe, , and M. Tjernström, 2012: On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. J. Climate, 25, 23742393, doi:10.1175/JCLI-D-11-00186.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , and J. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, doi:10.1007/s10584-005-9017-y.

  • Serreze, M. C., , A. P. Barrett, , J. C. Stroeve, , D. N. Kindig, , and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, doi:10.5194/tc-3-11-2009.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., , T. Uttal, , and S. Y. Matrosov, 2005: Arctic cloud microphysics retrievals from surface-based remote sensors at SHEBA. J. Appl. Meteor., 44, 15441562, doi:10.1175/JAM2297.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., , P. O. G. Persson, , I. M. Brooks, , M. Tjernström, , J. Sedlar, , T. Mauritsen, , S. Sjogren, , and C. Leck, 2013: Cloud and boundary layer interactions over the Arctic sea-ice in late summer. Atmos. Chem. Phys., 13, 93799400, doi:10.5194/acp-13-9379-2013.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., , M. Tjernström, , and P. O. G. Persson, 2015: Challenge of Arctic clouds and their implications for surface radiation [in “State of the Climate in 2014”]. Bull. Amer. Meteor. Soc., 96 (7), S130S131, doi:10.1175/2015BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Smith, W. L., Jr., and et al. , 2017: Arctic Radiation–IceBridge Sea and Ice Experiment (ARISE): The Arctic Radiant Energy System during the critical seasonal ice transition. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00277.1, in press.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., , M. D. Shupe, , O. Persson, , H. Morrison, , T. Yamaguchi, , P. M. Caldwell, , and G. de Boer, 2014: The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface-layer and cloud-top inversion-layer moisture sources. J. Atmos. Sci., 71, 574595, doi:10.1175/JAS-D-13-0179.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., , G. Feingold, , and M. D. Shupe, 2015: The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus. Atmos. Chem. Phys., 15, 10 63110 643, doi:10.5194/acp-15-10631-2015.

    • Search Google Scholar
    • Export Citation
  • Sotiropoulou, G., , J. Sedlar, , M. Tjernström, , M. D. Shupe, , I. M. Brooks, , and P. O. G. Persson, 2014: The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface. Atmos. Chem. Phys., 14, 12 57312 592, doi:10.5194/acp-14-12573-2014.

    • Search Google Scholar
    • Export Citation
  • Sotiropoulou, G., , J. Sedlar, , R. Forbes, , and M. Tjernström, 2016: Summer Arctic clouds in the ECMWF forecast model: An evaluation of cloud parametrization schemes. Quart. J. Roy. Meteor. Soc., 142, 387400, doi:10.1002/qj.2658.

    • Search Google Scholar
    • Export Citation
  • Steinhoff, D. F., , D. H. Bromwich, , and A. J. Monaghan, 2013: Dynamics of the foehn mechanism in the McMurdo Dry Valleys of Antarctica from Polar WRF. Quart. J. Roy. Meteor. Soc., 139, 16151631, doi:10.1002/qj.2038.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, doi:10.1175/JAS-D-13-0305.1.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., , J. Sedlar, , and M. D. Shupe, 2008: How well do regional climate models reproduce radiation and clouds in the Arctic? An evaluation of ARCMIP simulations. J. Appl. Meteor. Climatol., 47, 24052422, doi:10.1175/2008JAMC1845.1.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and et al. , 2012: Meteorological conditions in the central Arctic during the Arctic Summer Cloud Ocean Study (ASCOS). Atmos. Chem. Phys., 12, 68636889, doi:10.5194/acp-12-6863-2012.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and et al. , 2014: The Arctic Summer Cloud Ocean Study (ASCOS): Overview and experimental design. Atmos. Chem. Phys., 14, 28232869, doi:10.5194/acp-14-2823-2014.

    • Search Google Scholar
    • Export Citation
  • Uttal, T., and et al. , 2002: The Surface Heat Budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255275, doi:10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., 2004: The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J. Climate, 17, 603615, doi:10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., , D. Waliser, , A. Schweiger, , and J. Francis, 2009: Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4. Climate Dyn., 33, 10991115, doi:10.1007/s00382-008-0475-6.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., , U. S. Bhatt, , and V. A. Alexeev, 2011: Factors influencing simulated changes in future Arctic cloudiness. J. Climate, 24, 48174830, doi:10.1175/2011JCLI4029.1.

    • Search Google Scholar
    • Export Citation
  • Verlinde, H., and et al. , 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88, 205221, doi:10.1175/BAMS-88-2-205.

    • Search Google Scholar
    • Export Citation
  • Wesslén, C., , M. Tjernström, , D. H. Bromwich, , G. de Boer, , A. M. L. Ekman, , L.-S. Bai, , and S.-H. Wang, 2014: The Arctic summer atmosphere: An evaluation of reanalyses using ASCOS data. Atmos. Chem. Phys., 14, 26052624, doi:10.5194/acp-14-2605-2014.

    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., , Y. Han, , M. D. Shupe, , and S. Y. Matrosov, 2001: Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during Surface Heat Budget of the Arctic Ocean project. J. Geophys. Res., 106, 32 01932 030, doi:10.1029/2000JD000055.

    • Search Google Scholar
    • Export Citation
  • Williams, K., , and M. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33, 141157, doi:10.1007/s00382-008-0443-1.

    • Search Google Scholar
    • Export Citation
  • Wilson, A. B., , D. H. Bromwich, , and K. M. Hines, 2011: Evaluation of Polar WRF forecasts on the Arctic System Reanalysis domain: Surface and upper air analysis. J. Geophys. Res., 116, D11112, doi:10.1029/2010JD015013.

    • Search Google Scholar
    • Export Citation
  • Wilson, A. B., , D. H. Bromwich, , and K. M. Hines, 2012: Evaluation of Polar WRF forecasts on the Arctic System Reanalysis domain: 2. Atmospheric hydrologic cycle. J. Geophys. Res., 117, D04107, doi:10.1029/2011JD016765.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., , and D. A. Randall, 1996: A semiemperical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53, 30843102, doi:10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 132 132 11
PDF Downloads 85 85 9

Simulation of Late Summer Arctic Clouds during ASCOS with Polar WRF

View More View Less
  • 1 Polar Meteorology Group, Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio
© Get Permissions
Restricted access

Abstract

Low-level clouds are extensive in the Arctic and contribute to inadequately understood feedbacks within the changing regional climate. The simulation of low-level clouds, including mixed-phase clouds, over the Arctic Ocean during summer and autumn remains a challenge for both real-time weather forecasts and climate models. Here, improved cloud representations are sought with high-resolution mesoscale simulations of the August–September 2008 Arctic Summer Cloud Ocean Study (ASCOS) with the latest polar-optimized version (3.7.1) of the Weather Research and Forecasting (Polar WRF) Model with the advanced two-moment Morrison microphysics scheme. Simulations across several synoptic regimes for 10 August–3 September 2008 are performed with three domains including an outer domain at 27-km grid spacing and nested domains at 9- and 3-km spacing. These are realistic horizontal grid spacings for common mesoscale applications. The control simulation produces excessive cloud liquid water in low clouds resulting in a large deficit in modeled incident shortwave radiation at the surface. Incident longwave radiation is less sensitive. A change in the sea ice albedo toward the larger observed values during ASCOS resulted in somewhat more realistic simulations. More importantly, sensitivity tests show that a reduction in specified liquid cloud droplet number to very pristine conditions increases liquid precipitation, greatly reduces the excess in simulated low-level cloud liquid water, and improves the simulated incident shortwave and longwave radiation at the surface.

Byrd Polar and Climate Research Center Contribution Number 1548.

Corresponding author e-mail: Keith M. Hines, hines@polarmet1.mps.ohio-state.edu

Abstract

Low-level clouds are extensive in the Arctic and contribute to inadequately understood feedbacks within the changing regional climate. The simulation of low-level clouds, including mixed-phase clouds, over the Arctic Ocean during summer and autumn remains a challenge for both real-time weather forecasts and climate models. Here, improved cloud representations are sought with high-resolution mesoscale simulations of the August–September 2008 Arctic Summer Cloud Ocean Study (ASCOS) with the latest polar-optimized version (3.7.1) of the Weather Research and Forecasting (Polar WRF) Model with the advanced two-moment Morrison microphysics scheme. Simulations across several synoptic regimes for 10 August–3 September 2008 are performed with three domains including an outer domain at 27-km grid spacing and nested domains at 9- and 3-km spacing. These are realistic horizontal grid spacings for common mesoscale applications. The control simulation produces excessive cloud liquid water in low clouds resulting in a large deficit in modeled incident shortwave radiation at the surface. Incident longwave radiation is less sensitive. A change in the sea ice albedo toward the larger observed values during ASCOS resulted in somewhat more realistic simulations. More importantly, sensitivity tests show that a reduction in specified liquid cloud droplet number to very pristine conditions increases liquid precipitation, greatly reduces the excess in simulated low-level cloud liquid water, and improves the simulated incident shortwave and longwave radiation at the surface.

Byrd Polar and Climate Research Center Contribution Number 1548.

Corresponding author e-mail: Keith M. Hines, hines@polarmet1.mps.ohio-state.edu
Save