• Anderson, E., and H. Järvinen, 1999: Variational quality control. Quart. J. Roy. Meteor. Soc., 125, 697722, doi:10.1002/qj.49712555416.

  • Berre, L., H. Varella, and G. Desroziers, 2015: Modelling of flow-dependent ensemble-based background-error correlations using a wavelet formulation in 4D-Var at Météo-France. Quart. J. Roy. Meteor. Soc., 141, 28032812, doi:10.1002/qj.2565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational setting. Quart. J. Roy. Meteor. Soc., 131, 10131043, doi:10.1256/qj.04.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and A. Shlyaeva, 2015: Scale-dependent background-error covariance localisation. Tellus, 67A, 28027, doi:10.3402/tellusa.v67.28027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, doi:10.1175/2009MWR3157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Processes Geophys., 20, 669682, doi:10.5194/npg-20-669-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and et al. , 2015: Implementation of deterministic weather forecasting systems based on ensemble-variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 25322559, doi:10.1175/MWR-D-14-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. L. Houtekamer, G. Pellerin, Z. Toth, Y. Zhu, and M. Wei, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 10761097, doi:10.1175/MWR2905.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, W. F., C. H. Bishop, and D. Hodyss, 2010: Vertical covariance localization for satellite radiances in ensemble Kalman filters. Mon. Wea. Rev., 138, 282290, doi:10.1175/2009MWR3017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Candille, G., C. Côté, P. L. Houtekamer, and G. Pellerin, 2007: Verification of an ensemble prediction system against observations. Mon. Wea. Rev., 135, 26882699, doi:10.1175/MWR3414.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, doi:10.1002/qj.2054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, doi:10.1256/qj.05.108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairbairn, D., S. R. Pring, A. C. Lorenc, and I. Roulstone, 2014: A comparison of 4DVar with ensemble data assimilation methods. Quart. J. Roy. Meteor. Soc., 140, 281294, doi:10.1002/qj.2135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagnon, N., X.-X. Deng, P. L. Houtekamer, S. Beauregard, A. Erfani, M. Charron, R. Lahlou, and J. Marcoux, 2014: Improvements to the Global Ensemble Prediction System (GEPS) from version 3.1.0 to 4.0.0. Canadian Meteorological Centre Tech. Note, 49 pp. [Available online at http://collaboration.cmc.ec.gc.ca/cmc/CMOI/product_guide/docs/lib/technote_geps-400_20141118_e.pdf.]

  • Gagnon, N., and et al. , 2015: Improvements to the Global Ensemble Prediction System (GEPS) from version 4.0.1 to version 4.1.1. Canadian Meteorological Centre Tech. Note, 36 pp. [Available online at http://collaboration.cmc.ec.gc.ca/cmc/CMOI/product_guide/docs/lib/technote_geps-411_20151215_e.pdf.]

  • Girard, C., and et al. , 2014: Staggered vertical discretization of the Canadian Environmental Multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type. Mon. Wea. Rev., 142, 11831196, doi:10.1175/MWR-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, doi:10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heilliette, S., and L. Garand, 2015: Impact of accounting for inter-channel error covariances at the Canadian Meteorological Center. Oral Proceedings of the 2015 EUMETSAT Meteorological Satellite Conference, Session 1, Toulouse, France, EUMETSAT. [Available online at www.eumetsat.int/website/home/News/ConferencesandEvents/PreviousEvents/DAT_2305526.html.]

  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 12251242, doi:10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with the ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133, 604620, doi:10.1175/MWR-2864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 21262143, doi:10.1175/2008MWR2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., X. Deng, H. L. Mitchell, S.-J. Baek, and N. Gagnon, 2014a: Higher resolution in an operational ensemble Kalman filter. Mon. Wea. Rev., 142, 11431162, doi:10.1175/MWR-D-13-00138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., B. He, and H. L. Mitchell, 2014b: Parallel implementation of an ensemble Kalman filter. Mon. Wea. Rev., 142, 11631182, doi:10.1175/MWR-D-13-00011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, doi:10.1016/j.physd.2006.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaksen, L., M. Bonavita, R. Buizza, M. Fisher, J. Hasler, M. Leutbecher, and L. Raynaud, 2010: Ensemble of data assimilations at ECMWF. ECMWF Tech. Memo. 636, 48 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2010/10125-ensemble-data-assimilations-ecmwf.pdf.]

  • Kleist, D., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452470, doi:10.1175/MWR-D-13-00350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, L., and J. S. Whitaker, 2015: Model space localization is not always better than observation space localization for assimilation of satellite radiances. Mon. Wea. Rev., 143, 39483955, doi:10.1175/MWR-D-14-00413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833203, doi:10.1256/qj.02.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., N. Bowler, A. Clayton, and S. Pring, 2014: Development of the Met Office’s 4DEnVar System. Sixth EnKF Data Assimilation Workshop, Buffalo, NY, Pennsylvania State University. [Available online at http://hfip.psu.edu/fuz4/EnKF2014/EnKF-Day1/Lorenc_4DEnVar.pptx.]

  • Magnusson, L., M. Leutbecher, and E. Källén, 2008: Comparison between singular vectors and breeding vectors as initial perturbations for the ECMWF Ensemble Prediction System. Mon. Wea. Rev., 136, 40924104, doi:10.1175/2008MWR2498.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., and P. L. Houtekamer, 2009: Ensemble Kalman filter configurations and their performance with the logistic map. Mon. Wea. Rev., 137, 43254343, doi:10.1175/2009MWR2823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Weather Service, 2015: Technical implementation notice 15-43: Global Ensemble Forecast System (GEFS). (Changes effective 2 December 2015), accessed 8 January 2016. [Available online at http://www.nws.noaa.gov/os/notification/tin15-43gefsaad.htm.]

  • Parrish, D., and J. Derber, 1992: The National Meteorological Center’s spectral statistical interpolation analysis scheme. Mon. Wea. Rev., 120, 17471763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qaddouri, A., C. Girard, L. Garand, A. Plante, and D. Anselmo, 2015: Changes to the Global Deterministic Prediction System (GDPS) from version 4.0.1 to version 5.0.0—Yin–Yang grid configuration. Canadian Meteorological Centre Tech. Note, 59 pp. [Available online at http://collaboration.cmc.ec.gc.ca/cmc/CMOI/product_guide/docs/lib/technote_gdps-500_20151215_e.pdf.]

  • Raynaud, L., and F. Bouttier, 2016: Comparison of initial perturbation methods for ensemble prediction at convective scale. Quart. J. Roy. Meteor. Soc., 142, 854866, doi:10.1002/qj.2686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490, doi:10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and T. Lei, 2014: GSI-based four dimensional ensemble-variational (4DEnsVar) data assimilation: Formulation and single resolution experiments with real data for NCEP Global Forecast System. Mon. Wea. Rev., 142, 33033325, doi:10.1175/MWR-D-13-00303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, doi:10.1175/MWR-D-11-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 163 163 47
PDF Downloads 128 128 28

An Ensemble Kalman Filter for Numerical Weather Prediction Based on Variational Data Assimilation: VarEnKF

View More View Less
  • 1 Data Assimilation and Satellite Meteorology Research Section, Environment and Climate Change Canada, Dorval, Quebec, Canada
  • | 2 Numerical Weather Prediction Research Section, Environment and Climate Change Canada, Dorval, Quebec, Canada
  • | 3 Data Assimilation and Satellite Meteorology Research Section, Environment and Climate Change Canada, Dorval, Quebec, Canada
© Get Permissions
Restricted access

Abstract

Several NWP centers currently employ a variational data assimilation approach for initializing deterministic forecasts and a separate ensemble Kalman filter (EnKF) system both for initializing ensemble forecasts and for providing ensemble background error covariances for the deterministic system. This study describes a new approach for performing the data assimilation step within a perturbed-observation EnKF. In this approach, called VarEnKF, the analysis increment is computed with a variational data assimilation approach both for the ensemble mean and for all of the ensemble perturbations. To obtain a computationally efficient algorithm, a much simpler configuration is used for the ensemble perturbations, whereas the configuration used for the ensemble mean is similar to that used for the deterministic system. Numerous practical benefits may be realized by using a variational approach for both deterministic and ensemble prediction, including improved efficiency for the development and maintenance of the computer code. Also, the use of essentially the same data assimilation algorithm would likely reduce the amount of numerical experimentation required when making system changes, since their impacts in the two systems would be very similar. The variational approach enables the use of hybrid background error covariances and may also allow the assimilation of a larger volume of observations. Preliminary tests with the Canadian global 256-member system produced significantly improved ensemble forecasts with VarEnKF as compared with the current EnKF and at a comparable computational cost. These improvements resulted entirely from changes to the ensemble mean analysis increment calculation. Moreover, because each ensemble perturbation is updated independently, VarEnKF scales perfectly up to a very large number of processors.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Mark Buehner, mark.buehner@canada.ca

Abstract

Several NWP centers currently employ a variational data assimilation approach for initializing deterministic forecasts and a separate ensemble Kalman filter (EnKF) system both for initializing ensemble forecasts and for providing ensemble background error covariances for the deterministic system. This study describes a new approach for performing the data assimilation step within a perturbed-observation EnKF. In this approach, called VarEnKF, the analysis increment is computed with a variational data assimilation approach both for the ensemble mean and for all of the ensemble perturbations. To obtain a computationally efficient algorithm, a much simpler configuration is used for the ensemble perturbations, whereas the configuration used for the ensemble mean is similar to that used for the deterministic system. Numerous practical benefits may be realized by using a variational approach for both deterministic and ensemble prediction, including improved efficiency for the development and maintenance of the computer code. Also, the use of essentially the same data assimilation algorithm would likely reduce the amount of numerical experimentation required when making system changes, since their impacts in the two systems would be very similar. The variational approach enables the use of hybrid background error covariances and may also allow the assimilation of a larger volume of observations. Preliminary tests with the Canadian global 256-member system produced significantly improved ensemble forecasts with VarEnKF as compared with the current EnKF and at a comparable computational cost. These improvements resulted entirely from changes to the ensemble mean analysis increment calculation. Moreover, because each ensemble perturbation is updated independently, VarEnKF scales perfectly up to a very large number of processors.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Mark Buehner, mark.buehner@canada.ca
Save