• Anderson, J., , T. Hoar, , K. Raeder, , H. Liu, , N. Collins, , R. Torn, , and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., , and T. S. Pagano, 2014: Observing system simulation experiments to assess the potential impact of proposed satellite instruments on hurricane prediction. Imaging Spectrometry XIX, P. Mouroulis and T. S. Pagano, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9222), doi:10.1117/12.2063648.

  • Atlas, R., , L. Bucci, , B. Annane, , R. Hoffman, , and S. Murillo, 2015: Observing system simulation experiments to assess the potential impact of new observing systems on hurricane forecasting. Mar. Technol. Soc. J., 49, 140148, doi:10.4031/MTSJ.49.6.3.

    • Search Google Scholar
    • Export Citation
  • Bingham, G., and et al. , 2013: Rapidly updated hyperspectral sounding and imaging data for severe storm prediction. Infrared Remote Sensing and Instrumentation XXI, M. Strojnik Scholl and Gonzalo Páez, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8867), doi:10.1117/12.2030687.

  • Bluestein, H. B., , J. C. Snyder, , and J. B. Houser, 2015: A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Wea. Forecasting, 30, 525552, doi:10.1175/WAF-D-14-00152.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. Y., , C. Y. Huang, , Y. H. Kuo, , Y. R. Guo, , and S. Sokolovskiy, 2009: Assimilation of GPS refractivity from FORMOSAT-3/COSMIC using a nonlocal operator with WRF 3DVAR and its impact on the prediction of a typhoon event. Terr. Atmos. Oceanic Sci., 20, 133154, doi:10.3319/TAO.2007.11.29.01(F3C).

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., , M.-E. Hsieh, , L.-F. Hsiao, , Y.-H. Kuo, , M.-J. Yang, , C.-Y. Huang, , and C.-S. Lee, 2015: Systematic evaluation of the impacts of GPSRO data on the prediction of typhoons over the northwestern Pacific in 2008–2010. Atmos. Meas. Tech., 8, 25312542, doi:10.5194/amt-8-2531-2015.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., , and M. J. Suarez, 1999: A solar radiation parameterization (CLIRAD-SW) for atmospheric studies (Tech. Memo. 1999-104606). A Solar Radiation Parameterization for Atmospheric Studies, M.-D. Chou and M. J. Suarez, Eds., Technical Report Series on Global Modeling and Data Assimilation, Vol. 15, NASA, Goddard Space Flight Center, Greenbelt, MD, 38 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/phys_refs/SW_LW/Goddard_part1.pdf.]

  • Chou, M.-D., , M. J. Suarez, , X.-Z. Liang, , and M. M.-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies (Tech. Memo. 2001-104606). A Thermal Infrared Radiation Parameterization for Atmospheric Studies, M. J. Suarez, Ed., Technical Report Series on Global Modeling and Data Assimilation, Vol. 19, NASA, Goddard Space Flight Center, Greenbelt, MD, 55 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/phys_refs/SW_LW/Goddard_part2.pdf.]

  • Clark, A. J., , J. Gao, , P. T. Marsh, , T. Smith, , J. S. Kain, , J. Correia, Jr., , M. Xue, , and F. Kong, 2013: Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity. Wea. Forecasting, 28, 387407, doi:10.1175/WAF-D-12-00038.1.

    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • Cucurull, L., , and J. C. Derber, 2008: Operational implementation of COSMIC observations into NCEP’s global data assimilation system. Wea. Forecasting, 23, 702711, doi:10.1175/2008WAF2007070.1.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., , J. C. Derber, , R. Treadon, , and R. J. Purser, 2007: Assimilation of Global Positioning System radio occultation observations into NCEP’s global data assimilation system. Mon. Wea. Rev., 135, 31743193, doi:10.1175/MWR3461.1.

    • Search Google Scholar
    • Export Citation
  • Data Assimilation Research Testbed, 2016: DART Lanai Release Notes. NCAR, Boulder, CO, accessed 7 April 2014. [Available online at http://www.image.ucar.edu/DAReS/DART/Lanai_release.html. ]

  • Ek, M. B., , K. E. Mitchell, , Y. Lin, , E. Rogers, , P. Grunmann, , V. Koren, , G. Gayno, , and J. D. Tarpley, 2003: Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., , D. J. Stensrud, , and D. C. Dowell, 2007: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Mon. Wea. Rev., 135, 18461868, doi:10.1175/MWR3391.1.

    • Search Google Scholar
    • Export Citation
  • Gilliam, R. C., , and J. E. Pleim, 2010: Performance assessment of new land surface and planetary boundary layer physics in the WRF-ARW. J. Appl. Meteor. Climatol., 49, 760774, doi:10.1175/2009JAMC2126.1.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., , and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, doi:10.5194/acp-14-5233-2014.

    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., , E. Kalnay, , T. Miyoshi, , K. Ide, , and B. R. Hunt, 2011: Balance and ensemble Kalman filter localization techniques. Mon. Wea. Rev., 139, 511522, doi:10.1175/2010MWR3328.1.

    • Search Google Scholar
    • Export Citation
  • Hajj, G. A., , E. R. Kursinski, , L. J. Romans, , W. I. Bertiger, , and S. S. Leroy, 2002: A technical description of atmospheric sounding by GPS occultation. J. Atmos. Sol.-Terr. Phys., 64, 451469, doi:10.1016/S1364-6826(01)00114-6.

    • Search Google Scholar
    • Export Citation
  • Healy, S. B., 2008: Forecast impact experiment with a constellation of GPS radio occultation receivers. Atmos. Sci. Lett., 9, 111118, doi:10.1002/asl.169.

    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., , and R. Atlas, 2016: Future observing system simulation experiments. Bull. Amer. Meteor. Soc., 97, 16011616, doi:10.1175/BAMS-D-15-00200.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., , J. S. Delamere, , E. J. Mlawer, , M. W. Shephard, , S. A. Clough, , and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. Office Note 437, NCEP, Washington, DC, 61 pp.

  • Jirak, I. L., and et al. , 2014: An overview of the 2013 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. 26th Conf. on Weather Analysis and Forecasting/22nd Conf. on Numerical Weather Prediction, Atlanta, GA, Amer. Meteor. Soc., J11.1. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper239754.html.]

  • Jones, T. A., , J. A. Otkin, , D. J. Stensrud, , and K. Knopfmeier, 2013: Assimilation of satellite infrared radiances and Doppler radar observations during a cool season observing system simulation experiment. Mon. Wea. Rev., 141, 32733299, doi:10.1175/MWR-D-12-00267.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., , D. Stensrud, , L. Wicker, , P. Minnis, , and R. Palikonda, 2015: Simultaneous radar and satellite data storm-scale assimilation using an ensemble Kalman filter approach for 24 May 2011. Mon. Wea. Rev., 143, 165194, doi:10.1175/MWR-D-14-00180.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., , K. Knopfmeier, , D. Wheatley, , G. Creager, , P. Minnis, , and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental warn-on-forecast system. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, doi:10.1175/WAF-D-15-0107.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, 364 pp.

  • Kerr, C. A., , D. J. Stensrud, , and X. Wang, 2015: Assimilation of cloud-top temperature and radar observations of an idealized splitting supercell using an observing system simulation experiment. Mon. Wea. Rev., 143, 10181034, doi:10.1175/MWR-D-14-00146.1.

    • Search Google Scholar
    • Export Citation
  • Kunii, M., , H. Seko, , M. Ueno, , Y. Shoji, , and T. Tsuda, 2012: Impact of assimilation of GPS radio occultation refractivity on the forecast of Typhoon Usagi in 2007. J. Meteor. Soc. Japan, 90, 255273, doi:10.2151/jmsj.2012-207.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., , and G. A. Hajj, 2001: A comparison of water vapor derived from GPS occultations and global weather analyses. J. Geophys. Res., 106, 11131138, doi:10.1029/2000JD900421.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., , G. A. Hajj, , J. T. Schofield, , R. P. Linfield, , and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res., 102, 23 42923 465, doi:10.1029/97JD01569.

    • Search Google Scholar
    • Export Citation
  • Lambrigtsen, B. H., 2015: Progress in developing a geostationary microwave sounder. 11th Annual Symp. on New Generation Operational Environmental Satellite Systems, Phoenix, AZ, Amer. Meteor. Soc., J19.3. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper267078.html.]

  • Li, X., , F. Zus, , C. Lu, , T. Ning, , G. Dick, , M. Ge, , J. Wickert, , and H. Schuh, 2015: Retrieving high-resolution tropospheric gradients from multiconstellation GNSS observations. Geophys. Res. Lett., 42, 41734181, doi:10.1002/2015GL063856.

    • Search Google Scholar
    • Export Citation
  • Liu, H., , J. Anderson, , Y.-H. Kuo, , C. Snyder, , and A. Caya, 2008: Evaluation of a nonlocal quasi-phase observation operator in assimilation of CHAMP radio occultation refractivity with WRF. Mon. Wea. Rev., 136, 242256, doi:10.1175/2007MWR2042.1.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., , Y.-H. Kuo, , F. M. Ralph, , P. J. Neiman, , G. A. Wick, , E. Sukovich, , and B. Wang, 2011: Assimilation of GPS radio occultation data for an intense atmospheric river with the NCEP regional GSI system. Mon. Wea. Rev., 139, 21702183, doi:10.1175/2011MWR3342.1.

    • Search Google Scholar
    • Export Citation
  • Maschhoff, K., 2015: MISTiC winds, a distributed architecture approach to dynamic weather observations. Fifth Conf. on Transition of Research to Operations, Phoenix, AZ, Amer. Meteor. Soc., 2.2. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper269044.html.]

  • Melbourne, W. G., and et al. , 1994: The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publ. 94-18, NASA Jet Propulsion Laboratory, Pasadena, CA, 147 pp. [Available online at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19960008694.pdf.]

  • Nakanishi, M., , and H. Niino, 2006: An improved Mellor–Yamada Level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, doi:10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • Pan, Y., , K. Zhu, , M. Xue, , X. Wang, , M. Hu, , S. G. Benjamin, , S. S. Weygandt, , and J. S. Whitaker, 2014: A GSI-based coupled EnSRF-En3DVar hybrid data assimilation system for the operational rapid refresh model: Tests at a reduced resolution. Mon. Wea. Rev., 142, 37563780, doi:10.1175/MWR-D-13-00242.1.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007a: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, doi:10.1175/JAM2539.1.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007b: A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. J. Appl. Meteor. Climatol., 46, 13961409, doi:10.1175/JAM2534.1.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., , and A. Xiu, 2003: Development of a land surface model. Part II: Data assimilation. J. Appl. Meteor., 42, 18111822, doi:10.1175/1520-0450(2003)042<1811:DOALSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Poli, P., 2004: Effects of horizontal gradients on GPS radio occultation observation operators. II: A fast atmospheric refractivity gradient operator (FARGO). Quart. J. Roy. Meteor. Soc., 130, 28072825, doi:10.1256/qj.03.229.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., , G. S. Romine, , R. A. Sobash, , K. R. Fossell, , and M. L. Weisman, 2015a: NCAR’s experimental real-time convection-allowing ensemble prediction system. Wea. Forecasting, 30, 16451654, doi:10.1175/WAF-D-15-0103.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., , G. S. Romine, , M. L. Weisman, , R. A. Sobash, , K. R. Fossell, , K. W. Manning, , and S. B. Trier, 2015b: A real-time convection-allowing ensemble prediction system initialized by mesoscale ensemble Kalman filter analyses. Wea. Forecasting, 30, 11581181, doi:10.1175/WAF-D-15-0013.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Snook, N., , M. Xue, , and Y. Jung, 2015: Multiscale EnKF assimilation of radar and conventional observations and ensemble forecasting for a tornadic mesoscale convective system. Mon. Wea. Rev., 143, 10351057, doi:10.1175/MWR-D-13-00262.1.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., , Y.-H. Kuo, , and W. Wang, 2005: Assessing the accuracy of a linearized observation operator for assimilation of radio occultation data: Case simulations with a high-resolution weather model. Mon. Wea. Rev., 133, 22002212, doi:10.1175/MWR2948.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., , J.-W. Bao, , and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107, doi:10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and et al. , 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, doi:10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Tewari, M., and et al. , 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.]

  • Thompson, G., , R. M. Rasmussen, , and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , P. R. Field, , R. M. Rasmussen, , and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ware, R., and et al. , 1996: GPS sounding of the atmosphere from low earth orbit: Preliminary results. Bull. Amer. Meteor. Soc., 77, 1940, doi:10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and et al. , 2015: The Mesoscale Predictability Experiment (MPEX). Bull. Amer. Meteor. Soc., 96, 21272149, doi:10.1175/BAMS-D-13-00281.1.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., , K. H. Knopfmeier, , T. A. Jones, , and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental warn-on-forecast system. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, doi:10.1175/WAF-D-15-0043.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., , K. Kosiba, , P. Robinson, , and T. Marshall, 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, doi:10.1175/BAMS-D-13-00221.1.

    • Search Google Scholar
    • Export Citation
  • Xiu, A., , and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor., 40, 192209, doi:10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., , J. Gao, , D. J. Stensrud, , and G. Ge, 2013a: The impact of mesoscale environmental uncertainty on the prediction of a tornadic supercell storm using ensemble data assimilation approach. Adv. Meteor., 2013, 731647, doi:10.1155/2013/731647.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., , E. R. Mansell, , L. J. Wicker, , D. M. Wheatley, , and D. J. Stensrud, 2013b: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, doi:10.1175/MWR-D-12-00237.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , Y. Wang, , and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, doi:10.1175/MWR-D-10-05091.1.

    • Search Google Scholar
    • Export Citation
  • Zou, X., , Y.-H. Kuo, , and Y.-R. Guo, 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev., 123, 22292250, doi:10.1175/1520-0493(1995)123<2229:AOARRU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 108 108 16
PDF Downloads 28 28 9

A Severe Weather Quick Observing System Simulation Experiment (QuickOSSE) of Global Navigation Satellite System (GNSS) Radio Occultation (RO) Superconstellations

View More View Less
  • 1 Atmospheric and Environmental Research, Verisk Analytics, Lexington, Massachusetts
  • | 2 GeoOptics, Inc., Pasadena, California
  • | 3 Atmospheric and Environmental Research, Verisk Analytics, Lexington, Massachusetts, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
© Get Permissions
Restricted access

Abstract

Global Navigation Satellite System (GNSS) radio occultations (RO) over the last 10 years have proved to be a valuable and essentially unbiased data source for operational global numerical weather prediction. However, the existing sampling coverage is too sparse in both space and time to support forecasting of severe mesoscale weather. In this study, the case study or quick observing system simulation experiment (QuickOSSE) framework is used to quantify the impact of vastly increased numbers of GNSS RO profiles on mesoscale weather analysis and forecasting. The current study focuses on a severe convective weather event that produced both a tornado and flash flooding in Oklahoma on 31 May 2013. The WRF Model is used to compute a realistic and faithful depiction of reality. This 2-km “nature run” (NR) serves as the “truth” in this study. The NR is sampled by two proposed constellations of GNSS RO receivers that would produce 250 thousand and 2.5 million profiles per day globally. These data are then assimilated using WRF and a 24-member, 18-km-resolution, physics-based ensemble Kalman filter. The data assimilation is cycled hourly and makes use of a nonlocal, excess phase observation operator for RO data. The assimilation of greatly increased numbers of RO profiles produces improved analyses, particularly of the lower-tropospheric moisture fields. The forecast results suggest positive impacts on convective initiation. Additional experiments should be conducted for different weather scenarios and with improved OSSE systems.

Corresponding author e-mail: Ross N. Hoffman, ross.n.hoffman@aer.com

Abstract

Global Navigation Satellite System (GNSS) radio occultations (RO) over the last 10 years have proved to be a valuable and essentially unbiased data source for operational global numerical weather prediction. However, the existing sampling coverage is too sparse in both space and time to support forecasting of severe mesoscale weather. In this study, the case study or quick observing system simulation experiment (QuickOSSE) framework is used to quantify the impact of vastly increased numbers of GNSS RO profiles on mesoscale weather analysis and forecasting. The current study focuses on a severe convective weather event that produced both a tornado and flash flooding in Oklahoma on 31 May 2013. The WRF Model is used to compute a realistic and faithful depiction of reality. This 2-km “nature run” (NR) serves as the “truth” in this study. The NR is sampled by two proposed constellations of GNSS RO receivers that would produce 250 thousand and 2.5 million profiles per day globally. These data are then assimilated using WRF and a 24-member, 18-km-resolution, physics-based ensemble Kalman filter. The data assimilation is cycled hourly and makes use of a nonlocal, excess phase observation operator for RO data. The assimilation of greatly increased numbers of RO profiles produces improved analyses, particularly of the lower-tropospheric moisture fields. The forecast results suggest positive impacts on convective initiation. Additional experiments should be conducted for different weather scenarios and with improved OSSE systems.

Corresponding author e-mail: Ross N. Hoffman, ross.n.hoffman@aer.com
Save