• American Meteorological Society, 2015: Agricultural drought. Glossary of Meteorology. [Available online at http://glossary.ametsoc.org/wiki/Agricultural_drought.]

  • Berrisford, P., and et al. , 2011: The ERA-Interim archive, version 2.0. ERA Report Series, ERA Rep. Series 1, ECMWF, 23 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2011/8174-era-interim-archive-version-20.pdf.]

  • Chen, M., , W. Shi, , P. Xie, , V. B. S. Silva, , V. E. Kousky, , R. W. Higgins, , and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chen, P., , and M. Newman, 1998: Rossby wave propagation and the rapid development of upper-level anomalous anticyclones during the 1988 U.S. drought. J. Climate, 11, 24912504, doi:10.1175/1520-0442(1998)011<2491:RWPATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., , R. L. Miller, , and R. Seager, 2009: Amplification of the North American “Dust Bowl” drought through human-induced land degradation. Proc. Natl. Acad. Sci. USA, 106, 49975001, doi:10.1073/pnas.0810200106.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Drought under global warming: A review. WIREs Climate Change, 2, 4565, doi:10.1002/wcc.81.

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., , and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, doi:10.1175/JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , and J. L. Kinter, 2010: Floods over the U.S. Midwest: A regional water cycle perspective. J. Hydrometeor., 11, 11721181, doi:10.1175/2010JHM1196.1.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2009: ERA-Interim project. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 12 January 2016, doi:10.5065/D6CR5RD9.

  • Frankignoul, C., , and N. Sennéchael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592606, doi:10.1175/JCLI4021.1.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., , R. Saravanan, , and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 10271030, doi:10.1126/science.1089357.

    • Search Google Scholar
    • Export Citation
  • Gloeckler, L. C., , and P. E. Roundy, 2013: Modulation of the extratropical circulation by combined activity of the Madden–Julian oscillation and equatorial Rossby waves during boreal winter. Mon. Wea. Rev., 141, 13471357, doi:10.1175/MWR-D-12-00179.1.

    • Search Google Scholar
    • Export Citation
  • Heim, R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491165, doi:10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., , and A. Kumar, 2003: The perfect ocean for drought. Science, 299, 691694, doi:10.1126/science.1079053.

  • Hoerling, M., , J. Eischeid, , A. Kumar, , R. Leung, , A. Mariotti, , K. Mo, , S. Schubert, , and R. Seager, 2014: Causes and predictability of the 2012 great plains drought. Bull. Amer. Meteor. Soc., 95, 269282, doi:10.1175/BAMS-D-13-00055.1.

    • Search Google Scholar
    • Export Citation
  • Huang, C., , S. Duiker, , L. Deng, , C. Fang, , and W. Zeng, 2015: Influence of precipitation on maize yield in the eastern United States. Sustainability, 7, 59966010, doi:10.3390/su7055996.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., , M. Chen, , M. Hoerling, , and J. Eischeid, 2013: Do extreme climate events require extreme forcings? Geophys. Res. Lett., 40, 34403445, doi:10.1002/grl.50657.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78, 2133, doi:10.1175/1520-0477(1997)078<0021:IBGSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, H.-T., 2014: Climate Algorithm Theoretical Basis Document (C-ATBD): Outgoing Longwave Radiation (OLR)—Daily. NOAA’s Climate Data Record (CDR) Program, CDRP-ATBD-0526, 46 pp. [Available online at http://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Outgoing%20Longwave%20Radiation%20-%20Daily/AlgorithmDescription.pdf.]

  • Lin, J.-L., and et al. , 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

  • MacRitchie, K., , and P. E. Roundy, 2016: The two-way relationship between the Madden–Julian oscillation and anticyclonic wave breaking. Quart. J. Roy. Meteor. Soc., 142, 21592167, doi:10.1002/qj.2809.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., , and G. N. Kiladis, 1999: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian Oscillation. Mon. Wea. Rev., 127, 661677, doi:10.1175/1520-0493(1999)127<0661:TTEIBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , and J. E. Schemm, 2008: Droughts and persistent wet spells over the United States and Mexico. J. Climate, 21, 980994, doi:10.1175/2007JCLI1616.1.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1955: Some meteorological aspects of drought with special reference to the summers of 1952–54 over the United States. Mon. Wea. Rev., 83, 199205, doi:10.1175/1520-0493(1955)083<0199:SMAOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NOAA/OAR/ESRL PSD, 2016: CPC U.S. Unified Precipitation Dataset. Boulder, CO, accessed 12 January 2016. [Available online at http://www.esrl.noaa.gov/psd/.]

  • Piechota, T. C., , and J. A. Dracup, 1996: Drought and regional hydrologic variations in the United States: Associations with the El Niño–Southern Oscillation. Water Resour. Res., 32, 13591373, doi:10.1029/96WR00353.

    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., , E. Cook, , U. Lall, , and B. K. Ray, 2000: Spatiotemporal variability of ENSO and SST teleconnections to summer drought over the United States during the twentieth century. J. Climate, 13, 42444255, doi:10.1175/1520-0442(2000)013<4244:SVOEAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., , M. B. Stoner, , N. C. Johnson, , M. L. L’Heureux, , D. C. Collins, , and S. B. Feldstein, 2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dyn., 40, 17491766, doi:10.1007/s00382-012-1493-y.

    • Search Google Scholar
    • Export Citation
  • Rousseeuw, P. J., 1987: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20, 5365, doi:10.1016/0377-0427(87)90125-7.

    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., , and P. E. Roundy, 2015: The development of upper-tropospheric wind over the Western Hemisphere in association with MJO convective initiation. J. Atmos. Sci., 72, 31383160, doi:10.1175/JAS-D-14-0293.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , M. J. Suarez, , P. J. Pegion, , R. D. Koster, , and J. T. Bacmeister, 2004a: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485504, doi:10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , M. J. Suarez, , P. J. Pegion, , R. D. Koster, , and J. T. Bacmeister, 2004b: On the cause of the 1930s Dust Bowl. Science, 303, 18551859, doi:10.1126/science.1095048.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , M. J. Suarez, , P. J. Pegion, , R. D. Koster, , and J. T. Bacmeister, 2008: Potential predictability of long-term drought and pluvial conditions in the U.S. Great Plains. J. Climate, 21, 802816, doi:10.1175/2007JCLI1741.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and et al. , 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, doi:10.1175/2009JCLI3060.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , H. Wang, , and M. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, doi:10.1175/JCLI-D-10-05035.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., 2007: The turn of the century North American drought: Global context, dynamics, and past analogs. J. Climate, 20, 55275552, doi:10.1175/2007JCLI1529.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , and N. Henderson, 2013: Diagnostic computation of moisture budgets in the ERA-interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Climate, 26, 78767901, doi:10.1175/JCLI-D-13-00018.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and et al. , 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184, doi:10.1126/science.1139601.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , Y. Kushnir, , M. Ting, , M. Cane, , N. Naik, , and J. Miller, 2008: Would advance knowledge of 1930s SSTs have allowed prediction of the Dust Bowl drought? J. Climate, 21, 32613281, doi:10.1175/2007JCLI2134.1.

    • Search Google Scholar
    • Export Citation
  • Stein, A., , R. Draxler, , G. Rolph, , B. Stunder, , M. Cohen, , and F. Ngan, 2015: NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Amer. Meteor. Soc., 96, 20592077, doi:10.1175/BAMS-D-14-00110.1.

    • Search Google Scholar
    • Export Citation
  • Ting, M., , and H. Wang, 1997: Summertime U.S. precipitation variability and its relation to Pacific sea surface temperature. J. Climate, 10, 18531873, doi:10.1175/1520-0442(1997)010<1853:SUSPVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and C. J. Guillemot, 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 12881298, doi:10.1175/1520-0442(1996)009<1288:PPIITD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., Ed., 2000: Drought as a natural hazard: Concepts and definitions. Drought: A Global Assessment, Vol. 1, Routledge Publishers, 3–18.

  • Wu, R., , and J. L. Kinter, 2009: Analysis of the relationship of U.S. droughts with SST and soil moisture: Distinguishing the time scale of droughts. J. Climate, 22, 45204538, doi:10.1175/2009JCLI2841.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 28 28 7
PDF Downloads 26 26 7

The Evolution of Agricultural Drought Transition Periods in the U.S. Corn Belt

View More View Less
  • 1 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
© Get Permissions
Restricted access

Abstract

Agricultural drought in the U.S. Corn Belt region (CBR) has tremendous global socioeconomic implications. Unfortunately, the weather and climate factors that contribute to transition events toward or away from such droughts are poorly understood. This study applies composite, trajectory clusters, and a vertically integrated moisture budget to understand the phenomena that influence transition events that evolve over 20 and 60 days as modulated by interannual, intraseasonal, and synoptic-time-scale variability during May–August over the CBR. Results show that a shift in the low-frequency base state does not explain onset or decay of the 20- or 60-day drought transition cases. Instead, amplification of an intraseasonal Rossby wave train across the Pacific Ocean into North America, which occurs coincident with intraseasonal tropical convection on its equatorward side, triggers the transition. Trajectory analysis reveals similar source regions for air parcels associated with drought development and breakdown, but with a shift toward more parcels originating over the Gulf of Mexico during transitions away from drought. Finally, the vertically integrated moisture budget shows that advection and convergence of moisture on intraseasonal time scales dominates during these transitions. These results demonstrate that weather events are the primary driver of agricultural drought transitions occurring over 20 and 60 days.

Corresponding author e-mail: Nicholas Schiraldi, nschiraldi@albany.edu

Abstract

Agricultural drought in the U.S. Corn Belt region (CBR) has tremendous global socioeconomic implications. Unfortunately, the weather and climate factors that contribute to transition events toward or away from such droughts are poorly understood. This study applies composite, trajectory clusters, and a vertically integrated moisture budget to understand the phenomena that influence transition events that evolve over 20 and 60 days as modulated by interannual, intraseasonal, and synoptic-time-scale variability during May–August over the CBR. Results show that a shift in the low-frequency base state does not explain onset or decay of the 20- or 60-day drought transition cases. Instead, amplification of an intraseasonal Rossby wave train across the Pacific Ocean into North America, which occurs coincident with intraseasonal tropical convection on its equatorward side, triggers the transition. Trajectory analysis reveals similar source regions for air parcels associated with drought development and breakdown, but with a shift toward more parcels originating over the Gulf of Mexico during transitions away from drought. Finally, the vertically integrated moisture budget shows that advection and convergence of moisture on intraseasonal time scales dominates during these transitions. These results demonstrate that weather events are the primary driver of agricultural drought transitions occurring over 20 and 60 days.

Corresponding author e-mail: Nicholas Schiraldi, nschiraldi@albany.edu
Save