• Abatzoglou, J. T., and G. Magnusdottir, 2006: Planetary wave breaking and nonlinear reflection: Seasonal cycle and interannual variability. J. Climate, 19, 61396152, doi:10.1175/JCLI3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Appenzeller, C., and H. C. Davies, 1992: Structure of stratospheric intrusions into the troposphere. Nature, 358, 570572, doi:10.1038/358570a0.

  • Bentley, A. M., D. Keyser, and L. F. Bosart, 2016: A dynamically based climatology of subtropical cyclones that undergo tropical transition in the North Atlantic basin. Mon. Wea. Rev., 144, 20492068, doi:10.1175/MWR-D-15-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and G. M. Lackmann, 1995: Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123, 32683291, doi:10.1175/1520-0493(1995)123<3268:PTCRIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracken, W. E., and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128, 353376, doi:10.1175/1520-0493(2000)128<0353:TROSSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2001: Numerical simulations of the genesis of Hurricane Diana (1984). Part I: Control simulation. Mon. Wea. Rev., 129, 18591881, doi:10.1175/1520-0493(2001)129<1859:NSOTGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2002: Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 11001124, doi:10.1175/1520-0493(2002)130<1100:NSOTGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747, doi:10.1175/1520-0493(2003)131<2730:BITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2004: The TT problem: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85, 16571662, doi:10.1175/BAMS-85-11-1657.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, doi:10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and M. P. Guishard, 2009: Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Mon. Wea. Rev., 137, 20652080, doi:10.1175/2009MWR2468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, R. N., and W. H. Schubert, 1999: The role of tropical cyclones in the formation of tropical upper-tropospheric troughs. J. Atmos. Sci., 56, 28912907, doi:10.1175/1520-0469(1999)056<2891:TROTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., R. McTaggart-Cowan, L. F. Bosart, and C. A. Davis, 2015: Development of North Atlantic tropical disturbances near upper-level potential vorticity streamers. J. Atmos. Sci., 72, 572597, doi:10.1175/JAS-D-14-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • González-Alemán, J. J., F. Valero, F. Martín-León, and J. L. Evans, 2015: Classification and synoptic analysis of subtropical cyclones within the northeastern Atlantic Ocean. J. Climate, 28, 33313352, doi:10.1175/JCLI-D-14-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guishard, M. P., E. A. Nelson, J. L. Evans, R. E. Hart, and D. G. O’Connell, 2007: Bermuda subtropical storms. Meteor. Atmos. Phys., 97, 239253, doi:10.1007/s00703-006-0255-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guishard, M. P., J. L. Evans, and R. E. Hart, 2009: Atlantic subtropical storms. Part II: Climatology. J. Climate, 22, 35743594, doi:10.1175/2008JCLI2346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and J. M. Dea, 2009: Downstream development associated with the extratropical transition of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 137, 12951319, doi:10.1175/2008MWR2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. 5th ed. Academic Press, 532 pp.

    • Crossref
    • Export Citation
  • Hoskins, B. J., and M. A. Pedder, 1980: The diagnosis of middle latitude synoptic development. Quart. J. Roy. Meteor. Soc., 106, 707719, doi:10.1002/qj.49710645004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and et al. , 2011: Globally gridded satellite observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893907, doi:10.1175/2011BAMS3039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and M. Sprenger, 2008: Dynamical tropopause variability and potential vorticity streamers in the Northern Hemisphere—A climatological analysis. Adv. Atmos. Sci., 25, 367380, doi:10.1007/s00376-008-0367-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. C. Davies, 2010: Tropopause-level waveguides. J. Atmos. Sci., 67, 866879, doi:10.1175/2009JAS2995.1.

  • Mauk, R. G., and J. S. Hobgood, 2012: Tropical cyclone formation in environments with cool SST and high wind shear over the northeastern Atlantic Ocean. Wea. Forecasting, 27, 14331448, doi:10.1175/WAF-D-11-00048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600, doi:10.1038/305593a0.

  • McTaggart-Cowan, R., G. D. Deane, L. F. Bosart, C. A. Davis, and T. J. Galarneau Jr., 2008: Climatology of tropical cyclogenesis in the North Atlantic (1948–2004). Mon. Wea. Rev., 136, 12841304, doi:10.1175/2007MWR2245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, R. W. Moore, and O. Martius, 2013: A global climatology of baroclinically influenced tropical cyclogenesis. Mon. Wea. Rev., 141, 19631989, doi:10.1175/MWR-D-12-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., E. L. Davies, J. G. Fairman Jr., T. J. Galarneau Jr., and D. M. Schultz, 2015: Revisiting the 26.5°C sea surface temperature threshold for tropical cyclone development. Bull. Amer. Meteor. Soc., 96, 19291943, doi:10.1175/BAMS-D-13-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., S. Skubis, and D. Vollaro, 1995: External influences on hurricane intensity. Part III: Potential vorticity structure. J. Atmos. Sci., 52, 35933606, doi:10.1175/1520-0469(1995)052<3593:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieto, R., and et al. , 2005: Climatological features of cutoff low systems in the Northern Hemisphere. J. Climate, 18, 30853103, doi:10.1175/JCLI3386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmén, E., 1948: On the formation and structure of tropical cyclones. Geophysica, 3, 2638.

  • Palmén, E., and C. W. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Physical Interpretation. Academic Press, 603 pp.

  • Patla, J. E., D. Stevens, and G. M. Barnes, 2009: A conceptual model for the influence of TUTT cells on tropical cyclone motion in the northwest Pacific Ocean. Wea. Forecasting, 24, 12151235, doi:10.1175/2009WAF2222181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Postel, G. A., and M. H. Hitchman, 1999: A climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci., 56, 359373, doi:10.1175/1520-0469(1999)056<0359:ACORWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, doi:10.1002/joc.3370060305.

  • Riemer, M., S. C. Jones, and C. A. Davis, 2008: The impact of extratropical transition on the downstream flow: An idealized modelling study with a straight jet. Quart. J. Roy. Meteor. Soc., 134, 6991, doi:10.1002/qj.189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, D. M., 2002: A fifty year history of subtropical cyclones. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.43. [Available online at http://ams.confex.com/ams/pdfpapers/37402.pdf.]

  • Sadler, J. C., 1976: A role of the tropical upper tropospheric trough in early season typhoon development. Mon. Wea. Rev., 104, 12661278, doi:10.1175/1520-0493(1976)104<1266:AROTTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and M. Sprenger, 2007: Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 15691586, doi:10.1175/JAS3912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Zhang, G., Z. Wang, T. J. Dunkerton, M. S. Peng, and G. Magnusdottir, 2016: Extratropical impacts on Atlantic tropical cyclone activity. J. Atmos. Sci., 73, 14011418, doi:10.1175/JAS-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 129 129 12
PDF Downloads 92 92 7

Upper-Tropospheric Precursors to the Formation of Subtropical Cyclones that Undergo Tropical Transition in the North Atlantic Basin

View More View Less
  • 1 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
© Get Permissions
Restricted access

Abstract

The opportunity to examine the structure and evolution of the various upper-tropospheric precursors to the formation of North Atlantic (NATL) subtropical cyclones (STCs) that undergo tropical transition (TT) motivates this study. Intraseasonal variability associated with the location and frequency of NATL STCs forming in the presence of similar upper-tropospheric features, as well as similarities and differences in the various upper-tropospheric precursors to the formation of NATL STCs that undergo TT, are examined. NATL STCs that undergo TT are categorized according to the upper-tropospheric features associated with their formation during 1979–2010 using the 0.5° NCEP Climate Forecast System Reanalysis dataset. This categorization allows for the documentation of the location and frequency of STCs forming in the presence of similar upper-tropospheric features and for the construction of cyclone-relative composites during the five days prior to STC formation.

NATL STCs that undergo TT are separated into one of three categories based on the upper-tropospheric features associated with their formation: 1) cutoff lows, 2) meridional troughs, and 3) zonal troughs. STCs included in the cutoff low and meridional trough categories typically develop poleward of ~25°N over the western, central, and eastern NATL during September–November and August–November, respectively. In contrast, STCs included in the zonal trough category typically develop equatorward of ~30°N over the western NATL during June–September. Cyclone-relative composites reveal that ~61% of the categorized NATL STCs that undergo TT form in association with an upper-tropospheric feature whose structure and evolution are linked to anticyclonic wave breaking.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Alicia M. Bentley, ambentley@albany.edu

Abstract

The opportunity to examine the structure and evolution of the various upper-tropospheric precursors to the formation of North Atlantic (NATL) subtropical cyclones (STCs) that undergo tropical transition (TT) motivates this study. Intraseasonal variability associated with the location and frequency of NATL STCs forming in the presence of similar upper-tropospheric features, as well as similarities and differences in the various upper-tropospheric precursors to the formation of NATL STCs that undergo TT, are examined. NATL STCs that undergo TT are categorized according to the upper-tropospheric features associated with their formation during 1979–2010 using the 0.5° NCEP Climate Forecast System Reanalysis dataset. This categorization allows for the documentation of the location and frequency of STCs forming in the presence of similar upper-tropospheric features and for the construction of cyclone-relative composites during the five days prior to STC formation.

NATL STCs that undergo TT are separated into one of three categories based on the upper-tropospheric features associated with their formation: 1) cutoff lows, 2) meridional troughs, and 3) zonal troughs. STCs included in the cutoff low and meridional trough categories typically develop poleward of ~25°N over the western, central, and eastern NATL during September–November and August–November, respectively. In contrast, STCs included in the zonal trough category typically develop equatorward of ~30°N over the western NATL during June–September. Cyclone-relative composites reveal that ~61% of the categorized NATL STCs that undergo TT form in association with an upper-tropospheric feature whose structure and evolution are linked to anticyclonic wave breaking.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Alicia M. Bentley, ambentley@albany.edu
Save