Global Optimization of an Analog Method by Means of Genetic Algorithms

Pascal Horton Institute of Earth Sciences, University of Lausanne, Lausanne, and Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Bern, Switzerland

Search for other papers by Pascal Horton in
Current site
Google Scholar
PubMed
Close
,
Michel Jaboyedoff Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland

Search for other papers by Michel Jaboyedoff in
Current site
Google Scholar
PubMed
Close
, and
Charles Obled Laboratoire d’étude des Transferts en Hydrologie et Environnement (LTHE), Université de Grenoble-Alpes, Grenoble, France

Search for other papers by Charles Obled in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Analog methods are based on a statistical relationship between synoptic meteorological variables (predictors) and local weather (predictand, to be predicted). This relationship is defined by several parameters, which are often calibrated by means of a semiautomatic sequential procedure. This calibration approach is fast, but has strong limitations. It proceeds through successive steps, and thus cannot handle all parameter dependencies. Furthermore, it cannot automatically optimize some parameters, such as the selection of pressure levels and temporal windows (hours of the day) at which the predictors are compared. To overcome these limitations, the global optimization technique of genetic algorithms is considered, which can jointly optimize all parameters of the method, and get closer to a global optimum, by taking into account the dependencies of the parameters. Moreover, it can objectively calibrate parameters that were previously assessed manually and can take into account new degrees of freedom. However, genetic algorithms must be tailored to the problem under consideration. Multiple combinations of algorithms were assessed, and new algorithms were developed (e.g., the chromosome of adaptive search radius, which is found to be very robust), in order to provide recommendations regarding the use of genetic algorithms for optimizing several variants of analog methods. A global optimization approach provides new perspectives for the improvement of analog methods, and for their application to new regions or new predictands.

Denotes content that is immediately available upon publication as open access.

Current affiliation: Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Bern, Switzerland.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Pascal Horton, pascal.horton@giub.unibe.ch

Abstract

Analog methods are based on a statistical relationship between synoptic meteorological variables (predictors) and local weather (predictand, to be predicted). This relationship is defined by several parameters, which are often calibrated by means of a semiautomatic sequential procedure. This calibration approach is fast, but has strong limitations. It proceeds through successive steps, and thus cannot handle all parameter dependencies. Furthermore, it cannot automatically optimize some parameters, such as the selection of pressure levels and temporal windows (hours of the day) at which the predictors are compared. To overcome these limitations, the global optimization technique of genetic algorithms is considered, which can jointly optimize all parameters of the method, and get closer to a global optimum, by taking into account the dependencies of the parameters. Moreover, it can objectively calibrate parameters that were previously assessed manually and can take into account new degrees of freedom. However, genetic algorithms must be tailored to the problem under consideration. Multiple combinations of algorithms were assessed, and new algorithms were developed (e.g., the chromosome of adaptive search radius, which is found to be very robust), in order to provide recommendations regarding the use of genetic algorithms for optimizing several variants of analog methods. A global optimization approach provides new perspectives for the improvement of analog methods, and for their application to new regions or new predictands.

Denotes content that is immediately available upon publication as open access.

Current affiliation: Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Bern, Switzerland.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Pascal Horton, pascal.horton@giub.unibe.ch
Save
  • Alessandrini, S., L. Delle Monache, S. Sperati, and G. Cervone, 2015a: An analog ensemble for short-term probabilistic solar power forecast. Appl. Energy, 157, 95110, doi:10.1016/j.apenergy.2015.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alessandrini, S., L. Delle Monache, S. Sperati, and J. N. Nissen, 2015b: A novel application of an analog ensemble for short-term wind power forecasting. Renewable Energy, 76, 768781, doi:10.1016/j.renene.2014.11.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bäck, T., 1992a: Self-adaptation in genetic algorithms. Proceedings of the First European Conference on Artificial Life, Paris, France, Int. Society on Artificial Life, 263–271.

  • Bäck, T., 1992b: The interaction of mutation rate, selection, and self-adaptation within a genetic algorithm. Proc. Second Conf. on Parallel Problem Solving in Nature, Brussels, Belgium, Int. Society on Artificial Life, 85–94.

  • Bäck, T., 1996: Evolution strategies: An alternative evolutionary algorithm. Artificial Evolution, J.-M. Alliot et al., Eds., Lecture Notes in Computer Science, Vol. 1036, 3–20, doi:10.1007/3-540-61108-8_27.

    • Crossref
    • Export Citation
  • Bäck, T., and H.-P. Schwefel, 1993: An overview of evolutionary algorithms for parameter optimization. Evol. Comput., 1, 123, doi:10.1162/evco.1993.1.1.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bäck, T., and M. Schütz, 1996: Intelligent mutation rate control in canonical genetic algorithms. Foundation of Intelligent Systems: Ninth International Symposium, Z. W. Raś and M. Michalewicz, Eds., Lecture Notes in Computer Science, Vol. 1079, 158–167, doi:10.1007/3-540-61286-6_141.

    • Crossref
    • Export Citation
  • Beasley, D., R. Martin, and D. Bull, 1993: An overview of genetic algorithms: Part 1. Fundamentals. Univ. Comput., 15, 5869.

  • Beasley, J., and P. Chu, 1996: A genetic algorithm for the set covering problem. Eur. J. Oper. Res., 94, 392404, doi:10.1016/0377-2217(95)00159-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ben Daoud, A., 2010: Améliorations et développements d’une méthode de prévision probabiliste des pluies par analogie. Ph.D. thesis, Université de Grenoble, 299 pp. [Available online at https://tel.archives-ouvertes.fr/file/index/docid/483080/filename/These_BENDAOUD_VF.pdf.]

  • Ben Daoud, A., E. Sauquet, M. Lang, C. Obled, and G. Bontron, 2008: La prévision des précipitations par recherche d’analogues: État de l’art et perspectives. Houille Blanche, No. 6, Société Hydrotechnique de France, Paris, France, 60–65, doi:10.1051/lhb/2009079.

    • Crossref
    • Export Citation
  • Ben Daoud, A., E. Sauquet, G. Bontron, C. Obled, and M. Lang, 2016: Daily quantitative precipitation forecasts based on the analogue method: improvements and application to a French large river basin. Atmos. Res., 169, 147159, doi:10.1016/j.atmosres.2015.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessa, R., A. Trindade, C. S. Silva, and V. Miranda, 2015: Probabilistic solar power forecasting in smart grids using distributed information. Int. J. Electr. Power Energy Syst., 72, 1623, doi:10.1016/j.ijepes.2015.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bliefernicht, J., 2010: Probability forecasts of daily areal precipitation for small river basins. Ph.D. thesis, Universität Stuttgart, 167 pp. [Availability online at http://elib.uni-stuttgart.de/handle/11682/378.]

  • Bois, P., C. Obled, and J. Thalamy, 1981: Etude des liaisons entre champs de pression et températures sur l’Europe avec la durée d’insolation: Application à la possibilité de la prévision d’insolation. C.R. du colloque Météorologie de l’énergie solaire, Toulouse, France, PIRDES-CNRS, 145–177.

  • Bolognesi, R., 1993: Premiers développements d’un modèle hybride pour le diagnostic spatial des risques d’avalanches. Houille Blanche, No. 8, Société Hydrotechnique de France, Paris, France, 551–553, doi:10.1051/lhb/1993045.

    • Crossref
    • Export Citation
  • Bontron, G., 2004: Prévision quantitative des précipitations: Adaptation probabiliste par recherche d’analogues. Utilisation des Réanalyses NCEP/NCAR et application aux précipitations du Sud-Est de la France. Ph.D. thesis, Institut National Polytechnique de Grenoble, 262 pp. [Available online at https://hal.inria.fr/LTHE/tel-01090969v1.]

  • Bontron, G., and C. Obled, 2005: L’adaptation probabiliste des prévisions météorologiques pour la prévision hydrologique. Houille Blanche, No. 1, Société Hydrotechnique de France, Paris, France, 23–28, doi:10.1051/lhb:200501002.

    • Crossref
    • Export Citation
  • Brown, T., 1974: Admissible scoring systems for continuous distributions. Rand Corporation Rep. P-5235, 24 pp. [Available online at https://www.rand.org/content/dam/rand/pubs/papers/2008/P5235.pdf.]

  • Caillouet, L., J.-P. Vidal, E. Sauquet, and B. Graff, 2016: Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France. Climate Past, 12, 635662, doi:10.5194/cp-12-635-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chardon, J., B. Hingray, A.-C. Favre, P. Autin, J. Gailhard, I. Zin, and C. Obled, 2014: Spatial similarity and transferability of analog dates for precipitation downscaling over France. J. Climate, 27, 50565074, doi:10.1175/JCLI-D-13-00464.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, C. B., M. R. W. Maciel, and R. M. Filho, 2005: Factorial design technique applied to genetic algorithm parameters in a batch cooling crystallization optimisation. Comput. Chem. Eng., 29, 22292241, doi:10.1016/j.compchemeng.2005.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, C. B., E. C. Rivera, M. C. A. F. Rezende, M. R. W. Maciel, and R. M. Filho, 2007: Prior detection of genetic algorithm significant parameters: Coupling factorial design technique to genetic algorithm. Chem. Eng. Sci., 62, 47804801, doi:10.1016/j.ces.2007.03.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dayon, G., J. Boé, and E. Martin, 2015: Transferability in the future climate of a statistical downscaling method for precipitation in France. J. Geophys. Res. Atmos., 120, 10231043, doi:10.1002/2014JD022236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deb, K., and H. Beyer, 1999: Self-adaptation in real-parameter genetic algorithms with simulated binary crossover. Proc. Genetic and Evolutionary Computation Conf., Orlando, FL, ACM Special Interest Group on Genetic and Evolutionary Computation, 172–179. [Available online at http://ls11-www.informatik.uni-dortmund.de/~beyer/coll/DB99/final.ps.]

  • Deb, K., and H. Beyer, 2001: Self-adaptive genetic algorithms with simulated binary crossover. Evol. Comput., 9, 197221, doi:10.1162/106365601750190406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Jong, K. A., 1975: Analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, 256 pp. [Available online at https://deepblue.lib.umich.edu/handle/2027.42/4507.]

  • Delle Monache, L., T. Nipen, Y. Liu, G. Roux, and R. Stull, 2011: Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Wea. Rev., 139, 35543570, doi:10.1175/2011MWR3653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 34983516, doi:10.1175/MWR-D-12-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., and H. Zhang, 2003: Verification of spatial fields. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., John Wiley and Sons, 121–136.

  • Duband, D., 1970: Reconnaissance dynamique de la forme des situations météorologiques. Application à la prévision quantitative des précipitations. Ph.D. thesis, Faculté des sciences de Paris, 95 pp.

  • Fogarty, T. C., 1989: Varying the probability of mutation in the genetic algorithm. Proc. Third Int. Conf. on Genetic Algorithms, Fairfax, VA, ACM, 104–109.

  • Fraedrich, K., C. C. Raible, and F. Sielmann, 2003: Analog ensemble forecasts of tropical cyclone tracks in the Australian region. Wea. Forecasting, 18, 311, doi:10.1175/1520-0434(2003)018<0003:AEFOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaffney, J., C. Pearce, and D. Green, 2010: Binary versus real coding for genetic algorithms: A false dichotomy? Aust. N.Z. Indust. Appl. Math. J., 51, 347359, doi:10.21914/anziamj.v51i0.2776.

    • Search Google Scholar
    • Export Citation
  • García Hernández, J., P. Horton, C. Tobin, and J. Boillat, 2009: MINERVE 2010: Prévision hydrométéorologique et gestion des crues sur le Rhône alpin. Wasser Energie Luft, 4, 297302.

    • Search Google Scholar
    • Export Citation
  • Gibergans-Báguena, J., and M. Llasat, 2007: Improvement of the analog forecasting method by using local thermodynamic data: Application to autumn precipitation in Catalonia. Atmos. Res., 86, 173193, doi:10.1016/j.atmosres.2007.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, H., and D. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, doi:10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, D. E., 1989: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 432 pp.

  • Goldberg, D. E., 1991: Real-coded genetic algorithms, virtual alphabets, and blocking. Complex Syst., 5, 139167.

  • Gordon, N. D., 1987: Statistical very short-range forecasting via analogues. Proc. Symp. on Mesoscale Analysis and Forecasting, ESA SP-282, European Space Agency, 307–312.

  • Grefenstette, J. J., 1986: Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern., 16, 122128, doi:10.1109/TSMC.1986.289288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilbaud, S., 1997: Prévision quantitative des précipitations journalières par une méthode statistico-dynamique des recherche d’analogues—Application à des bassins du pourtour méditerranéen. Ph.D. thesis, Institut National Polytechnique de Grenoble, 386 pp. [Available online at https://tel.archives-ouvertes.fr/tel-01090981/file/These_Guilbaud-1997.pdf.]

  • Guilbaud, S., and C. Obled, 1998: Prévision quantitative des précipitations journalières par une technique de recherche de journées antérieures analogues: Optimisation du critère d’analogie. C. R. Acad. Sci., Ser. IIA, Earth Planet. Sci., 327, 181188.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, doi:10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., M. Scheuerer, and G. T. Bates, 2015: Analog probabilistic precipitation forecasts using GEFS reforecasts and climatology-calibrated precipitation analyses. Mon. Wea. Rev., 143, 33003309, doi:10.1175/MWR-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, W. E., and R. K. Belew, 1991: Optimizing an arbitrary function is hard for the genetic algorithm. Proc. Fourth Int. Conf. on Genetic Algorithms, San Diego, CA, ACM, 190–195.

  • Haupt, R. L., and S. E. Haupt, 2004: Practical Genetic Algorithms. John Wiley and Sons, 272 pp.

    • Crossref
    • Export Citation
  • Herrera, F., M. Lozano, and J. Verdegay, 1998: Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis. Artif. Intell. Rev., 12, 265319, doi:10.1023/A:1006504901164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, J., 1992: Genetic algorithms. Sci. Amer., 267, 6672, doi:10.1038/scientificamerican0792-66.

  • Horton, P., 2012: Améliorations et optimisation globale de la méthode des analogues pour la prévision statistique des précipitations. Développement d’un outil de prévision et application opérationnelle au bassin du Rhône à l’amont du Léman. Ph.D. thesis, Université de Lausanne, 320 pp. [Available online at https://tel.archives-ouvertes.fr/tel-01441762.]

  • Horton, P., M. Jaboyedoff, R. Metzger, C. Obled, and R. Marty, 2012: Spatial relationship between the atmospheric circulation and the precipitation measured in the western Swiss Alps by means of the analogue method. Nat. Hazard Earth Sys., 12, 777784, doi:10.5194/nhess-12-777-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joines, J., C. Culbreth, and R. King, 1996: Manufacturing cell design: An integer programming model employing genetic algorithms. IIE Trans., 28, 6985, doi:10.1080/07408179608966253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junk, C., L. Delle Monache, and S. Alessandrini, 2015a: Analog-based ensemble model output statistics. Mon. Wea. Rev., 143, 29092917, doi:10.1175/MWR-D-15-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junk, C., L. Delle Monache, S. Alessandrini, G. Cervone, and L. Von Bremen, 2015b: Predictor-weighting strategies for probabilistic wind power forecasting with an analog ensemble. Meteor. Z., 24, 361379, doi:10.1127/metz/2015/0659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and F. Woodcock, 1981: Objective tropical cyclone movement forecasts using synoptic and track analogue information. Bureau of Meteorology Tech. Rep. 121, 7 pp.

  • Klein, W., 1963: Specification of precipitation from the 700-millibar circulation. Mon. Wea. Rev., 91, 527536, doi:10.1175/1520-0493(1963)091<0527:SOPFTC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruizinga, S., and A. Murphy, 1983: Use of an analogue procedure to formulate objective probabilistic temperature forecasts in the Netherlands. Mon. Wea. Rev., 111, 22442254, doi:10.1175/1520-0493(1983)111<2244:UOAAPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1956: Empirical orthogonal functions and statistical weather prediction. Dept. of Meteorology Sci. Rep. 1, Massachusetts Institute of Technology, 49 pp. [Available online at http://www.o3d.org/abracco/Atlantic/Lorenz1956.pdf.]

  • Lorenz, E., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636646, doi:10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariano, A., C. Costa, D. de Angelis, D. Pires Atala, F. Maugeri Filho, M. Wolf Maciel, and R. Maciel Filho, 2010: Genetic algorithms (binary and real codes) for the optimisation of a fermentation process for butanol production. Int. J. Chem. React. Eng., 8, doi:10.2202/1542-6580.2333.

    • Search Google Scholar
    • Export Citation
  • Marty, R., I. Zin, C. Obled, G. Bontron, and A. Djerboua, 2012: Toward real-time daily PQPF by an analog sorting approach: Application to flash-flood catchments. J. Appl. Meteor. Climatol., 51, 505520, doi:10.1175/JAMC-D-11-011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheson, J., and R. Winkler, 1976: Scoring rules for continuous probability distributions. Manage. Sci., 22, 10871096, doi:10.1287/mnsc.22.10.1087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michalewicz, Z., 1996: Genetic Algorithms + Data Structures = Evolution Programs. 3rd ed. Springer-Verlag, 387 pp.

    • Crossref
    • Export Citation
  • Nelder, J., and R. Mead, 1965: A simplex method for function minimization. Comput. J., 7, 308313, doi:10.1093/comjnl/7.4.308.

  • Obled, C., and W. Good, 1980: Recent developments of avalanche forecasting by discriminant analysis techniques: A methodological review and some applications to the Parsenn area (Davos, Switzerland). J. Glaciol., 25, 315346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obled, C., G. Bontron, and R. Garçon, 2002: Quantitative precipitation forecasts: A statistical adaptation of model outputs through an analogues sorting approach. Atmos. Res., 63, 303324, doi:10.1016/S0169-8095(02)00038-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radanovics, S., J.-P. Vidal, E. Sauquet, A. Ben Daoud, and G. Bontron, 2013: Optimising predictor domains for spatially coherent precipitation downscaling. Hydrol. Earth Syst. Sci., 17, 41894208, doi:10.5194/hess-17-4189-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radcliffe, N., 1991: Forma analysis and random respectful combinations. Proc. Fourth Int. Conf. on Genetic Algorithms, San Diego, CA, ACM, 222–229.

  • Radinović, D., 1975: An analogue method for weather forecasting using the 500/1000 mb relative topography. Mon. Wea. Rev., 103, 639649, doi:10.1175/1520-0493(1975)103<0639:AAMFWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rechenberg, I., 1973: Evolutionsstrategie: Optimierung technisher Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, 170 pp.

  • Schraudolph, N., and R. Belew, 1992: Dynamic parameter encoding for genetic algorithms. Mach. Learn., 9 (1), 921.

  • Schwefel, H.-P., 1981: Numerical Optimization of Computer Models. John Wiley and Sons, 389 pp.

  • Schwefel, H.-P., 1995: Evolution and Optimum Seeking. Sixth Generation Computer Technologies Series, Book 4, John Wiley and Sons, 456 pp.

  • Sievers, O., K. Fraedrich, and C. C. Raible, 2000: Self-adapting analog ensemble predictions of tropical cyclone tracks. Wea. Forecasting, 15, 623629, doi:10.1175/1520-0434(2000)015<0623:SAAEPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J., and T. Fogarty, 1997: Operator and parameter adaptation in genetic algorithms. Soft Comput., 1 (2), 8187.

  • Syswerda, G., 1989: Uniform crossover in genetic algorithms. Proc. Third Int. Conf. on Genetic Algorithms, Fairfax, VA, ACM, 2–9.

  • Teweles, S., and H. B. Wobus, 1954: Verification of prognostic charts. Bull. Amer. Meteor. Soc., 35, 455463.

  • Vallée, J. L., 1986: Précipitations sur le Sud-Ouest du Massif Central et l’Est des Pyrénées. Optimisation du modèle EDF/DTG de prévision par recherche d’analogues. Note de travail de l’ENM 181, Météo-France, Toulouse, France, 110 pp.

  • Vanvyve, E., L. Delle Monache, A. J. Monaghan, and J. O. Pinto, 2015: Wind resource estimates with an analog ensemble approach. Renewable Energy, 74, 761773, doi:10.1016/j.renene.2014.08.060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, L. J., and N. Yacowar, 1980: Statistical weather element forecasting in the Canadian Weather Service. Proc. Symp. on Probabilistic and Statistical Methods in Weather Forecasting, Nice, France, WMO, 401–406.

  • Woodcock, F., 1980: On the use of analogues to improve regression forecasts. Mon. Wea. Rev., 108, 292297, doi:10.1175/1520-0493(1980)108<0292:OTUOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, A. H., 1991: Genetic algorithms for real parameter optimization. Found. Genet. Algorithms, 1, 205–218, doi:10.1016/B978-0-08-050684-5.50016-1.

    • Crossref
    • Export Citation
  • Zitzler, E., M. Laumanns, and S. Bleuler, 2004: A tutorial on evolutionary multiobjective optimization. Metaheuristics for Multiobjective Optimisation, X. Gandibleux et al., Eds., Lecture Notes in Economics and Mathematical Systems, Vol. 535, 3–37, doi:10.1007/978-3-642-17144-4_1.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2802 2059 62
PDF Downloads 295 57 5