Analogs on the Lorenz Attractor and Ensemble Spread

Aitor Atencia Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Aitor Atencia in
Current site
Google Scholar
PubMed
Close
and
Isztar Zawadzki Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Isztar Zawadzki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Intrinsic predictability is defined as the uncertainty in a forecast due to small errors in the initial conditions. In fact, not only the amplitude but also the structure of these initial errors plays a key role in the evolution of the forecast. Several methodologies have been developed to create an ensemble of forecasts from a feasible set of initial conditions, such as bred vectors or singular vectors. However, these methodologies consider only the fastest growth direction globally, which is represented by the Lyapunov vector.

In this paper, the simple Lorenz 63 model is used to compare bred vectors, random perturbations, and normal modes against analogs. The concept of analogs is based on the ergodicity theory to select compatible states for a given initial condition. These analogs have a complex structure in the phase space of the Lorenz attractor that is compatible with the properties of the nonlinear chaotic system.

It is shown that the initial averaged growth rate of errors of the analogs is similar to the one obtained with bred vectors or normal modes (fastest growth), but they do not share other properties or statistics, such as the spread of these growth rates. An in-depth study of different properties of the analogs and the previous existing perturbation methodologies is carried out to shed light on the consequences of forecasting the choice of the perturbations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Aitor Atencia, aitor.atencia@zamg.ac.at

Abstract

Intrinsic predictability is defined as the uncertainty in a forecast due to small errors in the initial conditions. In fact, not only the amplitude but also the structure of these initial errors plays a key role in the evolution of the forecast. Several methodologies have been developed to create an ensemble of forecasts from a feasible set of initial conditions, such as bred vectors or singular vectors. However, these methodologies consider only the fastest growth direction globally, which is represented by the Lyapunov vector.

In this paper, the simple Lorenz 63 model is used to compare bred vectors, random perturbations, and normal modes against analogs. The concept of analogs is based on the ergodicity theory to select compatible states for a given initial condition. These analogs have a complex structure in the phase space of the Lorenz attractor that is compatible with the properties of the nonlinear chaotic system.

It is shown that the initial averaged growth rate of errors of the analogs is similar to the one obtained with bred vectors or normal modes (fastest growth), but they do not share other properties or statistics, such as the spread of these growth rates. An in-depth study of different properties of the analogs and the previous existing perturbation methodologies is carried out to shed light on the consequences of forecasting the choice of the perturbations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Aitor Atencia, aitor.atencia@zamg.ac.at
Save
  • Bowler, N. E., 2006: Comparison of error breeding, singular vectors, random perturbations and ensemble Kalman filter perturbation strategies on a simple model. Tellus, 58A, 538548, doi:10.1111/j.1600-0870.2006.00197.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. Houtekamer, G. Pellerin, Z. Toth, Y. Zhu, and M. Wei, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 10761097, doi:10.1175/MWR2905.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., 1999: Two kinds of predictability in the Lorenz system. J. Atmos. Sci., 56, 14271432, doi:10.1175/1520-0469(1999)056<1427:TKOPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21A, 739759, doi:10.3402/tellusa.v21i6.10143.

  • Essex, C., T. Lookman, and M. Nerenberg, 1987: The climate attractor over short timescales. Nature, 326, 6466, doi:10.1038/326064a0.

  • Evans, E., N. Bhatti, L. Pann, J. Kinney, M. Peña, S.-C. Yang, E. Kalnay, and J. Hansen, 2004: RISE: Undergraduates find that regime changes in Lorenz’s model are predictable. Bull. Amer. Meteor. Soc., 85, 520524, doi:10.1175/BAMS-85-4-520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1990: Small error dynamics and the predictability of atmospheric flows. J. Atmos. Sci., 47, 24092416, doi:10.1175/1520-0469(1990)047<2409:SEDATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geisel, T., and J. Nierwetberg, 1982: Onset of diffusion and universal scaling in chaotic systems. Phys. Rev. Lett., 48, 7, doi:10.1103/PhysRevLett.48.7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golub, G. H., and C. F. Van Loan, 1996: Matrix Computations. 3rd ed. The John Hopkins University Press, 728 pp.

  • Grassberger, P., and I. Procaccia, 1983: Characterization of strange attractors. Phys. Rev. Lett., 50, 346, doi:10.1103/PhysRevLett.50.346.

  • Judd, K., and T. Stemler, 2010: Forecasting: It is not about statistics, it is about dynamics. Philos. Trans. Roy. Soc. London, 368A, 263271, doi:10.1098/rsta.2009.0195.

    • Search Google Scholar
    • Export Citation
  • Judd, K., C. A. Reynolds, T. E. Rosmond, and L. A. Smith, 2008: The geometry of model error. J. Atmos. Sci., 65, 17491772, doi:10.1175/2007JAS2327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., M. Corazza, and M. Cai, 2002: Are bred vectors the same as Lyapunov vectors? Proc. XXVII General Assembly, Nice, France, European Geophysical Society, Abstract 6820. [Available online at http://adsabs.harvard.edu/abs/2002EGSGA..27.6820K.]

  • Kolmogorov, A. N., 1933: Sulla determinazione empirica di una legge di distribuzione. G. Ist. Ital. Attuari, 4, 8391.

  • Kong, F., and Coauthors, 2014: CAPS storm-scale ensemble forecasting system: Impact of IC and LBC perturbations. 26th Conf. on Weather Analysis and Forecasting/22nd Conf. on Numerical Weather Prediction, Atlanta, GA, Amer. Meteor. Soc., 119. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper234762.html.]

  • Lacarra, J.-F., and O. Talagrand, 1988: Short-range evolution of small perturbations in a barotropic model. Tellus, 40A, 8195, doi:10.1111/j.1600-0870.1988.tb00408.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legras, B., and R. Vautard, 1996: A guide to liapunov vectors. Proceedings of a Seminar Held at ECMWF on Predictability, Vol. 1, ECMWF, 143156.

  • Li, J., and J. Chou, 1997: Existence of the atmosphere attractor. Sci. China, 40D, 215220, doi:10.1007/BF02878381.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17A, 321333, doi:10.1111/j.2153-3490.1965.tb01424.x.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636646, doi:10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, L., E. Källén, and J. Nycander, 2008: Initial state perturbations in ensemble forecasting. Nonlinear Processes Geophys., 15, 751759, doi:10.5194/npg-15-751-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, L., J. Nycander, and E. Källén, 2009: Flow-dependent versus flow-independent initial perturbations for ensemble prediction. Tellus, 61A, 194209, doi:10.1111/j.1600-0870.2008.00385.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandelbrot, B. B., 1983: The Fractal Geometry of Nature. Macmillan, 468 pp.

  • Manneville, P., and Y. Pomeau, 1979: Intermittency and the Lorenz model. Phys. Lett., 75A, 12, doi:10.1016/0375-9601(79)90255-X.

  • Miller, F., A. Vandome, and J. McBrewster, 2010: Ergodic Theory. Alphascript Publishing, 108 pp.

  • Milnor, J., 2004: On the concept of attractor. The Theory of Chaotic Attractors, Springer, 243–264.

    • Crossref
    • Export Citation
  • Murphy, J., 1988: The impact of ensemble forecasts on predictability. Quart. J. Roy. Meteor. Soc., 114, 463493, doi:10.1002/qj.49711448010.

  • Nese, J. M., 1989: Quantifying local predictability in phase space. Phys. D, 35, 237250, doi:10.1016/0167-2789(89)90105-X.

  • Nicolis, C., 1992: Probabilistic aspects of error growth in atmospheric dynamics. Quart. J. Roy. Meteor. Soc., 118, 553568, doi:10.1002/qj.49711850508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolis, C., S. Vannitsem, and J.-F. Royer, 1995: Short-range predictability of the atmosphere: Mechanisms for superexponential error growth. Quart. J. Roy. Meteor. Soc., 121, 705722, doi:10.1002/qj.49712152312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oseledets, V. I., 1968: A multiplicative ergodic theorem: Lyapunov characteristic exponents for dynamical systems. Tr. Mosk. Mat. O-va., 19, 179210.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., 1993: Extended-range atmospheric prediction and the Lorenz model. Bull. Amer. Meteor. Soc., 74, 4965, doi:10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pazó, D., J. López, and M. Rodríguez, 2013: The geometric norm improves ensemble forecasting with the breeding method. Quart. J. Roy. Meteor. Soc., 139, 20212032, doi:10.1002/qj.2115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruelle, D., and F. Takens, 1971: On the nature of turbulence. Commun. Math. Phys., 20, 167192, doi:10.1007/BF01646553.

  • Saltzman, B., 1962: Finite amplitude free convection as an initial value problem—I. J. Atmos. Sci., 19, 329341, doi:10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smale, S., 1998: Mathematical problems for the next century. Math. Intell., 20, 715, doi:10.1007/bf03025291.

  • Smirnov, N., 1948: Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat., 19, 279281, doi:10.1214/aoms/1177730256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, doi:10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trevisan, A., 1993: Impact of transient error growth on global average predictability measures. J. Atmos. Sci., 50, 10161028, doi:10.1175/1520-0469(1993)050<1016:IOTEGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trevisan, A., 1995: Statistical properties of predictability from atmospheric analogs and the existence of multiple flow regimes. J. Atmos. Sci., 52, 35773592, doi:10.1175/1520-0469(1995)052<3577:SPOPFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trevisan, A., and R. Legnani, 1995: Transient error growth and local predictability: A study in the Lorenz system. Tellus, 47A, 103117, doi:10.1034/j.1600-0870.1995.00006.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, W., 2002: A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math., 2, 53117, doi:10.1007/s002080010018.

  • Van den Dool, H., 1994: Searching for analogues, how long must we wait? Tellus, 46A, 314324, doi:10.3402/tellusa.v46i3.15481.

  • Van den Dool, H., J. Huang, and Y. Fan, 2003: Performance and analysis of the constructed analogue method applied to U.S. soil moisture over 1981–2001. J. Geophys. Res., 108, 8617, doi:10.1029/2002JD003114.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3146 2486 44
PDF Downloads 655 98 3