Developing a Convective-Scale EnKF Data Assimilation System for the Canadian MEOPAR Project

Dominik Jacques Data Assimilation and Satellite Meteorology Research Section, Environment and Climate Change Canada, Dorval, Québec, Canada

Search for other papers by Dominik Jacques in
Current site
Google Scholar
PubMed
Close
,
Weiguang Chang Data Assimilation and Satellite Meteorology Research Section, Environment and Climate Change Canada, Dorval, Québec, Canada

Search for other papers by Weiguang Chang in
Current site
Google Scholar
PubMed
Close
,
Seung-Jong Baek Data Assimilation and Satellite Meteorology Research Section, Environment and Climate Change Canada, Dorval, Québec, Canada

Search for other papers by Seung-Jong Baek in
Current site
Google Scholar
PubMed
Close
,
Thomas Milewski Data Assimilation and Satellite Meteorology Research Section, Environment and Climate Change Canada, Dorval, Québec, Canada

Search for other papers by Thomas Milewski in
Current site
Google Scholar
PubMed
Close
,
Luc Fillion Data Assimilation and Satellite Meteorology Research Section, Environment and Climate Change Canada, Dorval, Québec, Canada

Search for other papers by Luc Fillion in
Current site
Google Scholar
PubMed
Close
,
Kao-Shen Chung National Central University, Jhongli, Taiwan

Search for other papers by Kao-Shen Chung in
Current site
Google Scholar
PubMed
Close
, and
Harold Ritchie Environmental Numerical Prediction Research Section, Environment and Climate Change Canada, Dartmouth, Nova Scotia, Canada

Search for other papers by Harold Ritchie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study discusses the construction of a high-resolution ensemble Kalman filter system (the HREnKF) developed for the Marine Environmental Observation Prediction and Response (MEOPAR) network. The HREnKF runs at a horizontal resolution of 2.5 km and is intended to provide forecasts at lead times up to 12 h. This system was adapted from the global EnKF system in operation at Environment and Climate Change Canada. As a first development step, only the most necessary modifications have been implemented. The changes include an hourly cycling frequency, smaller localization radii, and the explicit representation of microphysical processes. To assess its performance and orient future developments, the HREnKF was continuously cycled for a period of 12 days. Verification against surface observations reveals that the skill of the forecasts initialized from the HREnKF is comparable to that of control forecasts also integrated at a resolution of 2.5 km. A key component of this study is the comparison of correlation estimated from ensembles at resolutions of 2.5, 15, and 50 km. At 2.5 km, correlation lengths are smaller than those found at 15 and 50 km. These short correlation lengths demand a high observational density, which is not available over the west coast domain where the HREnKF was tested. The spatial and temporal variability of the correlations is also assessed for the HREnKF system. It is found that correlation patterns are complex and do not generally decrease monotonically away from the reference point around which they are estimated. This result is important as it indicates that separation distance may not be the ideal parameter to use as a basis for localization strategies.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dominik Jacques, dominik.jacques@canada.ca

Abstract

This study discusses the construction of a high-resolution ensemble Kalman filter system (the HREnKF) developed for the Marine Environmental Observation Prediction and Response (MEOPAR) network. The HREnKF runs at a horizontal resolution of 2.5 km and is intended to provide forecasts at lead times up to 12 h. This system was adapted from the global EnKF system in operation at Environment and Climate Change Canada. As a first development step, only the most necessary modifications have been implemented. The changes include an hourly cycling frequency, smaller localization radii, and the explicit representation of microphysical processes. To assess its performance and orient future developments, the HREnKF was continuously cycled for a period of 12 days. Verification against surface observations reveals that the skill of the forecasts initialized from the HREnKF is comparable to that of control forecasts also integrated at a resolution of 2.5 km. A key component of this study is the comparison of correlation estimated from ensembles at resolutions of 2.5, 15, and 50 km. At 2.5 km, correlation lengths are smaller than those found at 15 and 50 km. These short correlation lengths demand a high observational density, which is not available over the west coast domain where the HREnKF was tested. The spatial and temporal variability of the correlations is also assessed for the HREnKF system. It is found that correlation patterns are complex and do not generally decrease monotonically away from the reference point around which they are estimated. This result is important as it indicates that separation distance may not be the ideal parameter to use as a basis for localization strategies.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dominik Jacques, dominik.jacques@canada.ca
Save
  • Ancell, B. C., C. F. Mass, and G. J. Hakim, 2011: Evaluation of surface analyses and forecasts with a multiscale ensemble Kalman filter in regions of complex terrain. Mon. Wea. Rev., 139, 20082024, doi:10.1175/2010MWR3612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancell, B. C., C. F. Mass, K. Cook, and B. Colman, 2014: Comparison of surface wind and temperature analyses from an ensemble Kalman filter and the NWS real-time mesoscale analysis system. Wea. Forecasting, 29, 10581075, doi:10.1175/WAF-D-13-00139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baek, S.-J., L. Fillion, and P. Houtekamer, 2012: Environment Canada’s regional ensemble Kalman filter: Some preliminary results. Fifth EnKF Workshop, Rensselaerville, NY. [Available online at http://hfip.psu.edu/fuz4/EnKF2012/Baek.pdf.]

  • Bélair, S., L.-P. Crevier, J. Mailhot, B. Bilodeau, and Y. Delage, 2003: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. J. Hydrometeor., 4, 352370, doi:10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bick, T., and Coauthors, 2016: Assimilation of 3D radar reflectivities with an ensemble Kalman filter on the convective scale. Quart. J. Roy. Meteor. Soc., 142, 14901504, doi:10.1002/qj.2751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brousseau, P., L. Berre, F. Bouttier, and G. Desroziers, 2011: Background-error covariances for a convective-scale data-assimilation system: AROME–France 3D-Var. Quart. J. Roy. Meteor. Soc., 137, 409422, doi:10.1002/qj.750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2012: Evaluation of a spatial/spectral covariance localization approach for atmospheric data assimilation. Mon. Wea. Rev., 140, 617636, doi:10.1175/MWR-D-10-05052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 25322559, doi:10.1175/MWR-D-14-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, W., K.-S. Chung, L. Fillion, and S.-J. Baek, 2014: Radar data assimilation in the Canadian high-resolution ensemble Kalman filter system: Performance and verification with real summer cases. Mon. Wea. Rev., 142, 21182138, doi:10.1175/MWR-D-13-00291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, K.-S., W. Chang, L. Fillion, and M. Tanguay, 2013: Examination of situation-dependent background error covariances at the convective scale in the context of the ensemble Kalman filter. Mon. Wea. Rev., 141, 33693387, doi:10.1175/MWR-D-12-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cookson-Hills, P., D. J. Kirshbaum, M. Surcel, L. Fillion, D. Jacques, S.-J. Baek, and J. Doyle, 2016: Evaluating precipitation forecasts from a High-Resolution ensemble Kalman filter (HREnKF) over the Pacific Northwest. 49th Congress of the Canadian Meteorological and Oceanic Society, Whistler, BC, Canada, Canadian Meteorological and Oceanographic Society.

  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fillion, L., H. L. Mitchell, H. Ritchie, and A. Staniforth, 1995: The impact of a digital filter finalization technique in a global data assimilation system. Tellus, 47A, 304323, doi:10.1034/j.1600-0870.1995.t01-2-00002.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzgerald, R., 1971: Divergence of the Kalman filter. IEEE Trans. Autom. Control, 16, 736747, doi:10.1109/TAC.1971.1099836.

  • Flowerdew, J., 2015: Initial trials of convective-scale ensemble data assimilation. Data Assimilation and Ensembles Science Rep. 3, Met Office, 29 pp.

  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geleyn, J.-F., 1985: On a simple, parameter-free partition between moistening and precipitation in the Kuo scheme. Mon. Wea. Rev., 113, 405407, doi:10.1175/1520-0493(1985)113<0405:OASPFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., E. Kalnay, T. Miyoshi, K. Ide, and B. R. Hunt, 2011: Balance and ensemble Kalman filter localization techniques. Mon. Wea. Rev., 139, 511522, doi:10.1175/2010MWR3328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, S.-Y., and C. Snyder, 2014: Influence of surface observations in mesoscale data assimilation using an ensemble Kalman filter. Mon. Wea. Rev., 142, 14891508, doi:10.1175/MWR-D-13-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and C. Snyder, 2005: Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL. Mon. Wea. Rev., 133, 32603275, doi:10.1175/MWR3022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnisch, F., and C. Keil, 2015: Initial conditions for convective-scale ensemble forecasting provided by ensemble data assimilation. Mon. Wea. Rev., 143, 15831600, doi:10.1175/MWR-D-14-00209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 32693289, doi:10.1256/qj.05.135.

  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133, 604620, doi:10.1175/MWR-2864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 21262143, doi:10.1175/2008MWR2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., X. Deng, H. L. Mitchell, S.-J. Baek, and N. Gagnon, 2014: Higher resolution in an operational ensemble Kalman filter. Mon. Wea. Rev., 142, 11431162, doi:10.1175/MWR-D-13-00138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X.-Y., and P. Lynch, 1993: Diabatic digital-filtering initialization: Application to the HIRLAM model. Mon. Wea. Rev., 121, 589603, doi:10.1175/1520-0493(1993)121<0589:DDFIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacques, D., and I. Zawadzki, 2015: The impacts of representing the correlation of errors in radar data assimilation. Part II: Model output as background estimates. Mon. Wea. Rev., 143, 26372656, doi:10.1175/MWR-D-14-00243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Lange, H., and G. C. Craig, 2014: The impact of data assimilation length scales on analysis and prediction of convective storms. Mon. Wea. Rev., 142, 37813808, doi:10.1175/MWR-D-13-00304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-S., Y.-H. Kuo, D. M. Barker, and E. Lim, 2006: Incremental analysis updates initialization technique applied to 10-km MM5 and MM5 3DVAR. Mon. Wea. Rev., 134, 13891404, doi:10.1175/MWR3129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macpherson, B., 1991: Dynamic initialization by repeated insertion of data. Quart. J. Roy. Meteor. Soc., 117, 965991, doi:10.1002/qj.49711750105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? The results of two years of real-time numerical weather prediction over the Pacific Northwest. Bull. Amer. Meteor. Soc., 83, 407430, doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, doi:10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 27912808, doi:10.1175/1520-0493(2002)130<2791:ESBAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and K. Kondo, 2013: A multi-scale localization approach to an ensemble Kalman filter. SOLA, 9, 170173, doi:10.2151/sola.2013-038.

  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, C. Snyder, J. L. Anderson, and M. L. Weisman, 2013: Model bias in a continuously cycled assimilation system and its influence on convection-permitting forecasts. Mon. Wea. Rev., 141, 12631284, doi:10.1175/MWR-D-12-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder, J. L. Anderson, and M. L. Weisman, 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 45194541, doi:10.1175/MWR-D-14-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Smith, and M. L. Weisman, 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter. Wea. Forecasting, 29, 12951318, doi:10.1175/WAF-D-13-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2015: NCAR’s experimental real-time convection-allowing ensemble prediction system. Wea. Forecasting, 30, 16451654, doi:10.1175/WAF-D-15-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and Y. Jung, 2015: Multiscale EnKF assimilation of radar and conventional observations and ensemble forecasting for a tornadic mesoscale convective system. Mon. Wea. Rev., 143, 10351057, doi:10.1175/MWR-D-13-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and D. J. Stensrud, 2015: Assimilating surface mesonet observations with the EnKF to improve ensemble forecasts of convection initiation on 29 May 2012. Mon. Wea. Rev., 143, 37003725, doi:10.1175/MWR-D-14-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and L. J. Wicker, 2015: On the impact of additive noise in storm-scale EnKF experiments. Mon. Wea. Rev., 143, 30673086, doi:10.1175/MWR-D-14-00323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., D. C. Dowell, L. J. Wicker, K. H. Knopfmeier, and D. M. Wheatley, 2015: Storm-scale data assimilation and ensemble forecasts for the 27 April 2011 severe weather outbreak in Alabama. Mon. Wea. Rev., 143, 30443066, doi:10.1175/MWR-D-14-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125, doi:10.1175/2009MWR2645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 817 424 38
PDF Downloads 232 52 4