• Bell, G. D., and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137161, doi:10.1175/1520-0493(1988)116<0137:ACAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bousquet, O., and B. F. Smull, 2003a: Airflow and precipitation fields within deep Alpine valleys observed by airborne Doppler radar. J. Appl. Meteor., 42, 14971513, doi:10.1175/1520-0450(2003)042<1497:AAPFWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bousquet, O., and B. F. Smull, 2003b: Observations and impacts of upstream blocking during a widespread orographic precipitation event. Quart. J. Roy. Meteor. Soc., 129, 391409, doi:10.1256/qj.02.49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., and W. R. Peltier, 1984: Critical level reflection and the resonant growth of nonlinear mountain waves. J. Atmos. Sci., 41, 31223134, doi:10.1175/1520-0469(1984)041<3122:CLRATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. F. Mass, 1995: The structure and evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123, 25772610, doi:10.1175/1520-0493(1995)123<2577:TSAEOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782, doi:10.1256/qj.04.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 2003: Downslope winds. Encyclopedia of Atmospheric Sciences, J. A. Curry and J. A. Pyle, Eds., Elsevier Science Ltd., 644–650.

    • Crossref
    • Export Citation
  • Fu, S., J. Sun, and J. Sun, 2014: Accelerating two-stage explosive development of an extratropical cyclone over the northwestern Pacific Ocean: A piecewise potential vorticity diagnosis. Tellus, 66A, 23210, doi:10.3402/tellusa.v66.23210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., and Y. Asuma, 2008: Numerical study of explosively developing extratropical cyclones in the northwestern Pacific region. Mon. Wea. Rev., 136, 712740, doi:10.1175/2007MWR2111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and Y.-L. Chen, 1998: Barrier jets during TAMEX. Mon. Wea. Rev., 126, 959971, doi:10.1175/1520-0493(1998)126<0959:BJDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35, 5977, doi:10.1175/1520-0469(1978)035<0059:ASDWAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and et al. , 2000: The Met Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 29913012, doi:10.1002/qj.49712657002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1983: The kinematics of orographic airflow during Sierra storms. J. Atmos. Sci., 40, 12181227, doi:10.1175/1520-0469(1983)040<1218:TKOOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and G. K. Ferber, 1990: Surface pressure perturbations produced by an isolated mesoscale topographic barrier. Part I: General characteristics and dynamics. Mon. Wea. Rev., 118, 25792596, doi:10.1175/1520-0493(1990)118<2579:SPPPBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, J., B. A. Colle, N. A. Bond, and N. Winstead, 2007: A comparison of two coastal barrier jet events along the southeast Alaskan coast during the SARJET field experiment. Mon. Wea. Rev., 135, 36423663, doi:10.1175/MWR3448.E1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and N. A. Bond, 1993: The influence of coastal topography: The Yakutat storm. Mon. Wea. Rev., 121, 13881397, doi:10.1175/1520-0493(1993)121<1388:TIOCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and N. A. Bond, 1995: Observations and scale analysis of coastal wind jet. Mon. Wea. Rev., 123, 29342941, doi:10.1175/1520-0493(1995)123<2934:OASAOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, F., and R. B. Smith, 1999: Gap winds and wakes: SAR observations and numerical simulations. J. Atmos. Sci., 56, 905923, doi:10.1175/1520-0469(1999)056<0905:GWAWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 1982: Barrier winds along the Sierra Nevada Mountains. J. Appl. Meteor., 21, 925930, doi:10.1175/1520-0450(1982)021<0925:BWATSN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effect of mountains. J. Atmos. Sci., 42, 9771003, doi:10.1175/1520-0469(1985)042<0977:UEOMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., G. Grell, and Y.-H. Kuo, 1993: The ERICA IOP 5 storm. Part II: Sensitivity tests and further diagnosis based on model output. Mon. Wea. Rev., 121, 15951612, doi:10.1175/1520-0493(1993)121<1595:TEISPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, S., 1996: Pressure gradients and winds in Cook Strait. Wea. Forecasting, 11, 476488, doi:10.1175/1520-0434(1996)011<0476:PGAWIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinecke, P. A., and D. R. Durran, 2008: Estimating topographic blocking using a Froude number when the static stability is nonuniform. J. Atmos. Sci., 65, 10351048, doi:10.1175/2007JAS2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revell, M. J., J. H. Copeland, H. R. Larsen, and D. S. Wratt, 2002: Barrier jets around the Southern Alps of New Zealand and their potential to enhance alpine rainfall. Atmos. Res., 61, 277298, doi:10.1016/S0169-8095(01)00142-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richwien, B. A., 1980: The damming effect of the southern Appalachians. Natl. Wea. Dig., 5, 212.

  • Schwerdtfeger, W., 1975: Mountain barrier effect of the flow of stable air north of the Brooks Range. 24th Conf. on Climate of the Arctic, Fairbanks, AK, 204–208.

  • Scinocca, J. F., and W. R. Peltier, 1993: The instability of Long’s stationary solution and the evolution toward severe downslope windstorm flow. Part I: Nested grid numerical simulations. J. Atmos. Sci., 50, 22452263, doi:10.1175/1520-0469(1993)050<2245:TIOLSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci., 42, 25972603, doi:10.1175/1520-0469(1985)042<2597:OSDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 1–41, doi:10.1016/S0065-2687(08)60052-7.

    • Crossref
    • Export Citation
  • Webster, S., A. R. Brown, C. P. Jones, and D. R. Cameron, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 19892010, doi:10.1256/qj.02.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., M. Uddstrom, M. Revell, P. Andrews, H. Oliver, R. Turner, and T. Carey-Smith, 2011: Numerical simulations of effects of soil moisture and modification by mountains over New Zealand in summer. Mon. Wea. Rev., 139, 494510, doi:10.1175/2010MWR3324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., M. Uddstrom, M. Revell, P. Andrews, and R. Turner, 2012: Amplification of the impact of assimilating ATOVS radiances on simulated surface air temperatures over Canterbury by the Southern Alps, New Zealand. Mon. Wea. Rev., 140, 13671384, doi:10.1175/MWR-D-11-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, H.-C., and Y.-L. Chen, 2003: Numerical simulations of the barrier jet over northwestern Taiwan during the mei-yu season. Mon. Wea. Rev., 131, 13961407, doi:10.1175/1520-0493(2003)131<1396:NSOTBJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., and B. F. Smull, 2000: Airborne Doppler observations of a landfalling cold front upstream of steep coastal orography. Mon. Wea. Rev., 128, 15771603, doi:10.1175/1520-0493(2000)128<1577:ADOOAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 9
PDF Downloads 27 27 5

Damaging Southerly Winds Caused by Barrier Jets in the Cook Strait and Wellington Region of New Zealand

View More View Less
  • 1 National Institute of Water and Atmospheric Research, Wellington, New Zealand
© Get Permissions
Restricted access

Abstract

Strong southerly winds regularly occur in the Cook Strait region of New Zealand. Occasionally, these winds are strong enough to cause severe damage to property and threaten human life. One example of a storm containing such winds is the “Wellington Storm,” which occurred on 20 June 2013. For this case, wind speeds in Cook Strait were stronger than those observed or forecast elsewhere in the storm. Even though wind speeds of this intensity are rare, storms affecting New Zealand with central pressures equal to the Wellington Storm (~976 hPa) are not uncommon. Numerical experiments have been carried out to investigate the possible reasons for the exceptional damaging southerly winds (DSWs) occurring in this storm. Analyses of the simulations showed that DSWs in Cook Strait for this event were actually barrier jets, not gap winds as they appeared. The strength of barrier jets in Cook Strait is sensitive to the precise location of the storm center. This explains the uncommon occurrence of DSWs in Cook Strait. Numerical experiments that used scaled (either increased or decreased) New Zealand orography showed that the barrier jets became shallower and weaker when the mountain top heights were lower. This decrease in barrier jet strength with mountain height is largely consistent with the results from linear-scale analyses in previous publications. This result implies that numerical simulations using a lower topography than actual (usually the case in current operational NWP) may lead to errors in timing and in forecasting the strength of the damaging winds associated with barrier jets.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Yang Yang, y.yang@niwa.co.nz

Abstract

Strong southerly winds regularly occur in the Cook Strait region of New Zealand. Occasionally, these winds are strong enough to cause severe damage to property and threaten human life. One example of a storm containing such winds is the “Wellington Storm,” which occurred on 20 June 2013. For this case, wind speeds in Cook Strait were stronger than those observed or forecast elsewhere in the storm. Even though wind speeds of this intensity are rare, storms affecting New Zealand with central pressures equal to the Wellington Storm (~976 hPa) are not uncommon. Numerical experiments have been carried out to investigate the possible reasons for the exceptional damaging southerly winds (DSWs) occurring in this storm. Analyses of the simulations showed that DSWs in Cook Strait for this event were actually barrier jets, not gap winds as they appeared. The strength of barrier jets in Cook Strait is sensitive to the precise location of the storm center. This explains the uncommon occurrence of DSWs in Cook Strait. Numerical experiments that used scaled (either increased or decreased) New Zealand orography showed that the barrier jets became shallower and weaker when the mountain top heights were lower. This decrease in barrier jet strength with mountain height is largely consistent with the results from linear-scale analyses in previous publications. This result implies that numerical simulations using a lower topography than actual (usually the case in current operational NWP) may lead to errors in timing and in forecasting the strength of the damaging winds associated with barrier jets.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Yang Yang, y.yang@niwa.co.nz
Save