Abstract
Strong southerly winds regularly occur in the Cook Strait region of New Zealand. Occasionally, these winds are strong enough to cause severe damage to property and threaten human life. One example of a storm containing such winds is the “Wellington Storm,” which occurred on 20 June 2013. For this case, wind speeds in Cook Strait were stronger than those observed or forecast elsewhere in the storm. Even though wind speeds of this intensity are rare, storms affecting New Zealand with central pressures equal to the Wellington Storm (~976 hPa) are not uncommon. Numerical experiments have been carried out to investigate the possible reasons for the exceptional damaging southerly winds (DSWs) occurring in this storm. Analyses of the simulations showed that DSWs in Cook Strait for this event were actually barrier jets, not gap winds as they appeared. The strength of barrier jets in Cook Strait is sensitive to the precise location of the storm center. This explains the uncommon occurrence of DSWs in Cook Strait. Numerical experiments that used scaled (either increased or decreased) New Zealand orography showed that the barrier jets became shallower and weaker when the mountain top heights were lower. This decrease in barrier jet strength with mountain height is largely consistent with the results from linear-scale analyses in previous publications. This result implies that numerical simulations using a lower topography than actual (usually the case in current operational NWP) may lead to errors in timing and in forecasting the strength of the damaging winds associated with barrier jets.
© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).