Land-Based Convection Effects on Formation of Tropical Cyclone Mekkhala (2008)

Myung-Sook Park School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Myung-Sook Park in
Current site
Google Scholar
PubMed
Close
,
Myong-In Lee School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Myong-In Lee in
Current site
Google Scholar
PubMed
Close
,
Dongmin Kim School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Dongmin Kim in
Current site
Google Scholar
PubMed
Close
,
Michael M. Bell Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Michael M. Bell in
Current site
Google Scholar
PubMed
Close
,
Dong-Hyun Cha School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Dong-Hyun Cha in
Current site
Google Scholar
PubMed
Close
, and
Russell L. Elsberry Department of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Russell L. Elsberry in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effects of land-based convection on the formation of Tropical Storm Mekkhala (2008) off the west coast of the Philippines are investigated using the Weather Research and Forecasting Model with 4-km horizontal grid spacing. Five simulations with Thompson microphysics are utilized to select the control-land experiment that reasonably replicates the observed sea level pressure evolution. To demonstrate the contribution of the land-based convection, sensitivity experiments are performed by changing the land of the northern Philippines to water, and all five of these no-land experiments fail to develop Mekkhala.

The Mekkhala tropical depression develops when an intense, well-organized land-based mesoscale convective system moves offshore from Luzon and interacts with an oceanic mesoscale system embedded in a strong monsoon westerly flow. Because of this interaction, a midtropospheric mesoscale convective vortex (MCV) organizes offshore from Luzon, where monsoon convection continues to contribute to low-level vorticity enhancement below the midlevel vortex center. In the no-land experiments, widespread oceanic convection induces a weaker midlevel vortex farther south in a strong vertical wind shear zone and subsequently farther east in a weaker monsoon vortex region. Thus, the monsoon convection–induced low-level vorticity remained separate from the midtropospheric MCV, which finally resulted in a failure of the low-level spinup. This study suggests that land-based convection can play an advantageous role in TC formation by influencing the intensity and the placement of the incipient midtropospheric MCV to be more favorable for TC low-level circulation development.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology, Ansan, South Korea.

Corresponding author e-mail: Dr. Myong-In Lee, milee@unist.ac.kr

Abstract

The effects of land-based convection on the formation of Tropical Storm Mekkhala (2008) off the west coast of the Philippines are investigated using the Weather Research and Forecasting Model with 4-km horizontal grid spacing. Five simulations with Thompson microphysics are utilized to select the control-land experiment that reasonably replicates the observed sea level pressure evolution. To demonstrate the contribution of the land-based convection, sensitivity experiments are performed by changing the land of the northern Philippines to water, and all five of these no-land experiments fail to develop Mekkhala.

The Mekkhala tropical depression develops when an intense, well-organized land-based mesoscale convective system moves offshore from Luzon and interacts with an oceanic mesoscale system embedded in a strong monsoon westerly flow. Because of this interaction, a midtropospheric mesoscale convective vortex (MCV) organizes offshore from Luzon, where monsoon convection continues to contribute to low-level vorticity enhancement below the midlevel vortex center. In the no-land experiments, widespread oceanic convection induces a weaker midlevel vortex farther south in a strong vertical wind shear zone and subsequently farther east in a weaker monsoon vortex region. Thus, the monsoon convection–induced low-level vorticity remained separate from the midtropospheric MCV, which finally resulted in a failure of the low-level spinup. This study suggests that land-based convection can play an advantageous role in TC formation by influencing the intensity and the placement of the incipient midtropospheric MCV to be more favorable for TC low-level circulation development.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology, Ansan, South Korea.

Corresponding author e-mail: Dr. Myong-In Lee, milee@unist.ac.kr
Save
  • Beattie, J. C., and R. L. Elsberry, 2013: Horizontal structure of monsoon depressions in the western North Pacific at formation time. Geophys. Res. Lett., 40, 983987, doi:10.1002/grl.50198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., 1995: The parameterization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, doi:10.1002/qj.49712152203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and M. T. Montgomery, 2010: Sheared deep vertical convection in pre-depression Hagupit during TCS08. Geophys. Res. Lett., 37, L06802, doi:10.1029/2009GL042313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305, doi:10.1175/JAS-D-11-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and P. A. Harr, 2008: Tropical Cyclone Structure (TCS08) field experiment: Science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209231.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1975: Tropical cyclone genesis. Dept. of Atmospheric Science, Colorado State University Paper CSU-ATSP-234, 121 pp.

  • Harr, P. A., R. L. Elsberry, and J. C. L. Chan, 1996: Transformation of a large monsoon depression to a tropical storm during TCM-93. Mon. Wea. Rev., 124, 26252643, doi:10.1175/1520-0493(1996)124<2625:TOALMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, doi:10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., L. Tian, A. J. Heymsfield, L. Li, and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308, doi:10.1175/2009JAS3132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., M.-S. Park, Y.-S. Choi, and Y. N. Takayabu, 2008: Relationship between intraseasonal oscillation and diurnal variation of summer rainfall over the South China Sea. Geophys. Res. Lett., 35, L03701, doi:10.1029/2007GL031962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W.-R., J. C. L. Chan, and S.-Y. Wang, 2010: A planetary-scale land–sea breeze circulation in East Asia and the western North Pacific. Quart. J. Roy. Meteor. Soc., 136, 15431553, doi:10.1002/qj.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., S. L. Aves, P. E. Ciesielski, and T. D. Keenan, 2005: Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon. Mon. Wea. Rev., 133, 131148, doi:10.1175/MWR-2843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., J.-H. Kim, C.-H. Ho, and P.-S. Chu, 2011: Pattern classification of typhoon tracks using the fuzzy c-means clustering method. J. Climate, 24, 488508, doi:10.1175/2010JCLI3751.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., C.-H. Ho, H.-S. Kim, C.-H. Sui, and S. K. Park, 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. J. Climate, 21, 11711191, doi:10.1175/2007JCLI1493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1994: Description of a monsoon gyre and its effect on the tropical cyclones in the western North Pacific during August 1991. Wea. Forecasting, 9, 640654, doi:10.1175/1520-0434(1994)009<0640:DOAMGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 24172437, doi:10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, doi:10.1175/JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153172, doi:10.1175/BAMS-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y. W., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, doi:10.1023/A:1022146015946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Park, M.-S., and R. L. Elsberry, 2013: Latent heating and cooling rates in developing and nondeveloping tropical disturbances during TCS-08: TRMM PR and ELDORA retrievals. J. Atmos. Sci., 70, 1535, doi:10.1175/JAS-D-12-083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M.-S., C.-H. Ho, J. Kim, and R. L. Elsberry, 2011: Diurnal circulations and their multi-scale interaction leading to rainfall over the South China Sea upstream of the Philippines during intraseasonal monsoon westerly wind bursts. Climate Dyn., 37, 14831499, doi:10.1007/s00382-010-0922-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M.-S., A. B. Penny, R. L. Elsberry, B. J. Billings, and J. D. Doyle, 2013: Latent heating and cooling rates in developing and nondeveloping tropical disturbances during TCS-08: Radar-equivalent retrievals from mesoscale numerical models and ELDORA. J. Atmos. Sci., 70, 3755, doi:10.1175/JAS-D-11-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M.-S., H.-S. Kim, C.-H. Ho, R. L. Elsberry, and M.-I. Lee, 2015: Tropical Cyclone Mekkhala’s (2008) formation over the South China Sea: Mesoscale, synoptic-scale, and large-scale contributions. Mon. Wea. Rev., 143, 88110, doi:10.1175/MWR-D-14-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penny, A. B., P. A. Harr, and M. M. Bell, 2015: Observations of a nondeveloping tropical disturbance in the western North Pacific during TCS-08 (2008). Mon. Wea. Rev., 143, 24592484, doi:10.1175/MWR-D-14-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 11171133, doi:10.1175/1520-0469(1971)028<1117:SAPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396, doi:10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Snively, D. V., and W. A. Gallus Jr., 2014: Prediction of convective morphology in near-cloud-permitting WRF model simulations. Wea. Forecasting, 29, 130149, doi:10.1175/WAF-D-13-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W. K., S. Lang, J. Simpson, C.-H. Sui, B. Ferrier, and M.-D. Chou, 1996: Mechanisms of cloud–radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53, 26242651, doi:10.1175/1520-0469(1996)053<2624:MOCRII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2014: Role of cumulus congestus in tropical cyclone formation in a high-resolution numerical model simulation. J. Atmos. Sci., 71, 16811700, doi:10.1175/JAS-D-13-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010: Genesis of pre–Hurricane Felix (2007). Part II: Warm core formation, precipitation evolution, and predictability. J. Atmos. Sci., 67, 17301744, doi:10.1175/2010JAS3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226, doi:10.1175/JCLI3883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1570 941 76
PDF Downloads 600 62 12