• Beattie, J. C., and R. L. Elsberry, 2013: Horizontal structure of monsoon depressions in the western North Pacific at formation time. Geophys. Res. Lett., 40, 983987, doi:10.1002/grl.50198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., 1995: The parameterization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, doi:10.1002/qj.49712152203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and M. T. Montgomery, 2010: Sheared deep vertical convection in pre-depression Hagupit during TCS08. Geophys. Res. Lett., 37, L06802, doi:10.1029/2009GL042313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305, doi:10.1175/JAS-D-11-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and P. A. Harr, 2008: Tropical Cyclone Structure (TCS08) field experiment: Science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209231.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1975: Tropical cyclone genesis. Dept. of Atmospheric Science, Colorado State University Paper CSU-ATSP-234, 121 pp.

  • Harr, P. A., R. L. Elsberry, and J. C. L. Chan, 1996: Transformation of a large monsoon depression to a tropical storm during TCM-93. Mon. Wea. Rev., 124, 26252643, doi:10.1175/1520-0493(1996)124<2625:TOALMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, doi:10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., L. Tian, A. J. Heymsfield, L. Li, and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308, doi:10.1175/2009JAS3132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., M.-S. Park, Y.-S. Choi, and Y. N. Takayabu, 2008: Relationship between intraseasonal oscillation and diurnal variation of summer rainfall over the South China Sea. Geophys. Res. Lett., 35, L03701, doi:10.1029/2007GL031962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W.-R., J. C. L. Chan, and S.-Y. Wang, 2010: A planetary-scale land–sea breeze circulation in East Asia and the western North Pacific. Quart. J. Roy. Meteor. Soc., 136, 15431553, doi:10.1002/qj.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., S. L. Aves, P. E. Ciesielski, and T. D. Keenan, 2005: Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon. Mon. Wea. Rev., 133, 131148, doi:10.1175/MWR-2843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., J.-H. Kim, C.-H. Ho, and P.-S. Chu, 2011: Pattern classification of typhoon tracks using the fuzzy c-means clustering method. J. Climate, 24, 488508, doi:10.1175/2010JCLI3751.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., C.-H. Ho, H.-S. Kim, C.-H. Sui, and S. K. Park, 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. J. Climate, 21, 11711191, doi:10.1175/2007JCLI1493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1994: Description of a monsoon gyre and its effect on the tropical cyclones in the western North Pacific during August 1991. Wea. Forecasting, 9, 640654, doi:10.1175/1520-0434(1994)009<0640:DOAMGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 24172437, doi:10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, doi:10.1175/JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and et al. , 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153172, doi:10.1175/BAMS-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y. W., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, doi:10.1023/A:1022146015946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Park, M.-S., and R. L. Elsberry, 2013: Latent heating and cooling rates in developing and nondeveloping tropical disturbances during TCS-08: TRMM PR and ELDORA retrievals. J. Atmos. Sci., 70, 1535, doi:10.1175/JAS-D-12-083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M.-S., C.-H. Ho, J. Kim, and R. L. Elsberry, 2011: Diurnal circulations and their multi-scale interaction leading to rainfall over the South China Sea upstream of the Philippines during intraseasonal monsoon westerly wind bursts. Climate Dyn., 37, 14831499, doi:10.1007/s00382-010-0922-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M.-S., A. B. Penny, R. L. Elsberry, B. J. Billings, and J. D. Doyle, 2013: Latent heating and cooling rates in developing and nondeveloping tropical disturbances during TCS-08: Radar-equivalent retrievals from mesoscale numerical models and ELDORA. J. Atmos. Sci., 70, 3755, doi:10.1175/JAS-D-11-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M.-S., H.-S. Kim, C.-H. Ho, R. L. Elsberry, and M.-I. Lee, 2015: Tropical Cyclone Mekkhala’s (2008) formation over the South China Sea: Mesoscale, synoptic-scale, and large-scale contributions. Mon. Wea. Rev., 143, 88110, doi:10.1175/MWR-D-14-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penny, A. B., P. A. Harr, and M. M. Bell, 2015: Observations of a nondeveloping tropical disturbance in the western North Pacific during TCS-08 (2008). Mon. Wea. Rev., 143, 24592484, doi:10.1175/MWR-D-14-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 11171133, doi:10.1175/1520-0469(1971)028<1117:SAPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396, doi:10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Snively, D. V., and W. A. Gallus Jr., 2014: Prediction of convective morphology in near-cloud-permitting WRF model simulations. Wea. Forecasting, 29, 130149, doi:10.1175/WAF-D-13-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W. K., S. Lang, J. Simpson, C.-H. Sui, B. Ferrier, and M.-D. Chou, 1996: Mechanisms of cloud–radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53, 26242651, doi:10.1175/1520-0469(1996)053<2624:MOCRII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2014: Role of cumulus congestus in tropical cyclone formation in a high-resolution numerical model simulation. J. Atmos. Sci., 71, 16811700, doi:10.1175/JAS-D-13-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010: Genesis of pre–Hurricane Felix (2007). Part II: Warm core formation, precipitation evolution, and predictability. J. Atmos. Sci., 67, 17301744, doi:10.1175/2010JAS3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226, doi:10.1175/JCLI3883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 157 9
PDF Downloads 113 113 6

Land-Based Convection Effects on Formation of Tropical Cyclone Mekkhala (2008)

View More View Less
  • 1 School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
  • | 2 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 3 School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
  • | 4 Department of Meteorology, Naval Postgraduate School, Monterey, California
© Get Permissions
Restricted access

Abstract

The effects of land-based convection on the formation of Tropical Storm Mekkhala (2008) off the west coast of the Philippines are investigated using the Weather Research and Forecasting Model with 4-km horizontal grid spacing. Five simulations with Thompson microphysics are utilized to select the control-land experiment that reasonably replicates the observed sea level pressure evolution. To demonstrate the contribution of the land-based convection, sensitivity experiments are performed by changing the land of the northern Philippines to water, and all five of these no-land experiments fail to develop Mekkhala.

The Mekkhala tropical depression develops when an intense, well-organized land-based mesoscale convective system moves offshore from Luzon and interacts with an oceanic mesoscale system embedded in a strong monsoon westerly flow. Because of this interaction, a midtropospheric mesoscale convective vortex (MCV) organizes offshore from Luzon, where monsoon convection continues to contribute to low-level vorticity enhancement below the midlevel vortex center. In the no-land experiments, widespread oceanic convection induces a weaker midlevel vortex farther south in a strong vertical wind shear zone and subsequently farther east in a weaker monsoon vortex region. Thus, the monsoon convection–induced low-level vorticity remained separate from the midtropospheric MCV, which finally resulted in a failure of the low-level spinup. This study suggests that land-based convection can play an advantageous role in TC formation by influencing the intensity and the placement of the incipient midtropospheric MCV to be more favorable for TC low-level circulation development.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology, Ansan, South Korea.

Corresponding author e-mail: Dr. Myong-In Lee, milee@unist.ac.kr

Abstract

The effects of land-based convection on the formation of Tropical Storm Mekkhala (2008) off the west coast of the Philippines are investigated using the Weather Research and Forecasting Model with 4-km horizontal grid spacing. Five simulations with Thompson microphysics are utilized to select the control-land experiment that reasonably replicates the observed sea level pressure evolution. To demonstrate the contribution of the land-based convection, sensitivity experiments are performed by changing the land of the northern Philippines to water, and all five of these no-land experiments fail to develop Mekkhala.

The Mekkhala tropical depression develops when an intense, well-organized land-based mesoscale convective system moves offshore from Luzon and interacts with an oceanic mesoscale system embedded in a strong monsoon westerly flow. Because of this interaction, a midtropospheric mesoscale convective vortex (MCV) organizes offshore from Luzon, where monsoon convection continues to contribute to low-level vorticity enhancement below the midlevel vortex center. In the no-land experiments, widespread oceanic convection induces a weaker midlevel vortex farther south in a strong vertical wind shear zone and subsequently farther east in a weaker monsoon vortex region. Thus, the monsoon convection–induced low-level vorticity remained separate from the midtropospheric MCV, which finally resulted in a failure of the low-level spinup. This study suggests that land-based convection can play an advantageous role in TC formation by influencing the intensity and the placement of the incipient midtropospheric MCV to be more favorable for TC low-level circulation development.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology, Ansan, South Korea.

Corresponding author e-mail: Dr. Myong-In Lee, milee@unist.ac.kr
Save