Tropical Cyclone Outflow and Warm Core Structure as Revealed by HS3 Dropsonde Data

William A. Komaromi Naval Research Laboratory, Monterey, California

Search for other papers by William A. Komaromi in
Current site
Google Scholar
PubMed
Close
and
James D. Doyle Naval Research Laboratory, Monterey, California

Search for other papers by James D. Doyle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Dropsonde data collected during the NASA Hurricane and Severe Storm Sentinel (HS3) field campaign from 16 research missions spanning 6 tropical cyclones (TCs) are investigated, with an emphasis on TC outflow and the warm core. The Global Hawk (GH) AV-6 aircraft provided a unique opportunity to investigate the outflow characteristics due to a combination of 18+-h flight durations and the ability to release dropsondes from high altitudes above 100 hPa. Intensifying TCs are found to be associated with stronger upper-level divergence and radial outflow relative to nonintensifying TCs in the sample, regardless of current intensity. A layer of 2–4 m s−1 inflow 20–50 hPa deep is also observed 50–100 hPa above the maximum outflow layer, which appears to be associated with lower-stratospheric descent above the eye. The potential temperature of the outflow is found to be more strongly correlated with the equivalent potential temperature of the boundary layer inflow than to the present storm intensity, consistent with the outflow temperature having a stronger relationship with potential intensity than actual intensity. Finally, the outflow originates from a region of low inertial stability that extends above the cyclone from 300 to 150 hPa and from 50- to 200-km radius.

The unique nature of this dataset allows the height and structure of the warm core also to be investigated. The magnitude of the warm core was found to be positively correlated with TC intensity, while the height of the warm core was weakly positively correlated with intensity. Finally, neither the height nor magnitude of the warm core exhibits any meaningful relationship with intensity change.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: William A. Komaromi, will.komaromi@nrlmry.navy.mil

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Abstract

Dropsonde data collected during the NASA Hurricane and Severe Storm Sentinel (HS3) field campaign from 16 research missions spanning 6 tropical cyclones (TCs) are investigated, with an emphasis on TC outflow and the warm core. The Global Hawk (GH) AV-6 aircraft provided a unique opportunity to investigate the outflow characteristics due to a combination of 18+-h flight durations and the ability to release dropsondes from high altitudes above 100 hPa. Intensifying TCs are found to be associated with stronger upper-level divergence and radial outflow relative to nonintensifying TCs in the sample, regardless of current intensity. A layer of 2–4 m s−1 inflow 20–50 hPa deep is also observed 50–100 hPa above the maximum outflow layer, which appears to be associated with lower-stratospheric descent above the eye. The potential temperature of the outflow is found to be more strongly correlated with the equivalent potential temperature of the boundary layer inflow than to the present storm intensity, consistent with the outflow temperature having a stronger relationship with potential intensity than actual intensity. Finally, the outflow originates from a region of low inertial stability that extends above the cyclone from 300 to 150 hPa and from 50- to 200-km radius.

The unique nature of this dataset allows the height and structure of the warm core also to be investigated. The magnitude of the warm core was found to be positively correlated with TC intensity, while the height of the warm core was weakly positively correlated with intensity. Finally, neither the height nor magnitude of the warm core exhibits any meaningful relationship with intensity change.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: William A. Komaromi, will.komaromi@nrlmry.navy.mil

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Save
  • Aberson, S. D., M. L. Black, R. A. Black, R. W. Burpee, J. J. Cione, C. W. Landsea, and F. D. Marks Jr., 2006: Thirty years of tropical cyclone research with the NOAA P-3 aircraft. Bull. Amer. Meteor. Soc., 87, 10391055, doi:10.1175/BAMS-87-8-1039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alaka, M. A., 1961: The occurrence of anomalous winds and their significance. Mon. Wea. Rev., 89, 482494, doi:10.1175/1520-0493(1961)089<0482:TOOAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345363, doi:10.1175/BAMS-D-11-00232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2016: NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 97, 20852102, doi:10.1175/BAMS-D-15-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, doi:10.1175/JAS-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305, doi:10.1175/JAS-D-11-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2013: Thermodynamic environments of deep convection in Atlantic tropical disturbances. J. Atmos. Sci., 70, 19121928, doi:10.1175/JAS-D-12-0278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolling, K., and G. M. Barnes, 2012: Warm-core formation in Tropical Storm Humberto (2001). Mon. Wea. Rev., 140, 11771190, doi:10.1175/MWR-D-11-00183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, doi:10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durden, S. L., 2013: Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa. Mon. Wea. Rev., 141, 42564268, doi:10.1175/MWR-D-13-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, doi:10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halverson, J. B., J. Simpson, G. Heymsfield, H. Pierce, T. Hock, and L. Ritchie, 2006: Warm core structure of Hurricane Erin diagnosed from high altitude dropsondes during CAMEX-4. J. Atmos. Sci., 63, 309324, doi:10.1175/JAS3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964. II: Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96, 617636, doi:10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418442, doi:10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helms, C. N., and R. E. Hart, 2013: A polygon-based line integral method for calculating vorticity, divergence, and deformation from nonuniform observations. J. Appl. Meteor. Climatol., 52, 15111521, doi:10.1175/JAMC-D-12-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helms, C. N., and R. E. Hart, 2015: The evolution of dropsonde-derived kinematic and thermodynamic structures in developing and nondeveloping Atlantic tropical convective systems. Mon. Wea. Rev., 143, 31093135, doi:10.1175/MWR-D-14-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40, 13101330, doi:10.1175/1520-0450(2001)040<1310:EDRIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723745, doi:10.1002/qj.49711046510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic, 535 pp.

  • Knox, J. A., 1997: Generalized nonlinear balance criteria and inertial stability. J. Atmos. Sci., 54, 967985, doi:10.1175/1520-0469(1997)054<0967:GNBCAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • La Seur, N. E., and H. F. Hawkins, 1963: An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91, 694709, doi:10.1175/1520-0493(1963)091<0694:AAOHCB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 120, doi:10.3402/tellusa.v12i1.9351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., R. A. Houze Jr., and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919942, doi:10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988a: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 16781687, doi:10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988b: Characteristics of the upper-tropospheric environmental flow around hurricanes. J. Atmos. Sci., 45, 16651677, doi:10.1175/1520-0469(1988)045<1665:COTUTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., and C. S. Velden, 1996: A three-dimensional analysis of the outflow layer of Supertyphoon Flo (1990). Mon. Wea. Rev., 124, 4763, doi:10.1175/1520-0493(1996)124<0047:ATDAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, W., H. Chen, and D. L. Zhang, 2015: On the intensification of Hurricane Wilma (2005). Part III: Effects of latent heat of fusion. J. Atmos. Sci., 72, 38293849, doi:10.1175/JAS-D-14-0386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2014: Symmetric instability in the outflow layer of a major hurricane. J. Atmos. Sci., 71, 37393746, doi:10.1175/JAS-D-14-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohno, T., and M. Satoh, 2015: On the warm core of a tropical cyclone formed near the tropopause. J. Atmos. Sci., 72, 551571, doi:10.1175/JAS-D-14-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., M. C. Morgan, and G. J. Tripoli, 2011: The impact of outflow environment on tropical cyclone intensification and structure. J. Atmos. Sci., 68, 177194, doi:10.1175/2009JAS2970.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. Aberson, J. Kaplan, and S. Goldenberg, 2002: A pronounced upper-tropospheric warm anomaly encountered by the NOAA G-IV aircraft in the vicinity of deep convection. Mon. Wea. Rev., 130, 180187, doi:10.1175/1520-0493(2002)130<0180:APUTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, doi:10.1175/MWR-D-14-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 26212643, doi:10.1175/JAS-D-11-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., and D. Hodyss, 2016: A deeper analysis of center-finding techniques for tropical cyclones in mesoscale models. Part I: Low wavenumber analysis. J. Appl. Meteor. Climatol., 55, 531559, doi:10.1175/JAMC-D-15-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1976: A role of the tropical upper tropospheric trough in early season typhoon development. Mon. Wea. Rev., 104, 12661278, doi:10.1175/1520-0493(1976)104<1266:AROTTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1978: Mid-season typhoon development and intensity changes and the tropical upper tropospheric trough. Mon. Wea. Rev., 106, 11371152, doi:10.1175/1520-0493(1978)106<1137:MSTDAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sibson, R., 1981: A brief description of natural neighbor interpolation. Interpreting Multivariate Data, V. Barnett, Ed., John Wiley and Sons, 21–36.

  • Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, doi:10.1175/JAS-D-11-010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Titley, D. W., and R. L. Elsberry, 2000: Large intensity changes in tropical cyclones: A case study of Supertyphoon Flo during TCM-90. Mon. Wea. Rev., 128, 35563573, doi:10.1175/1520-0493(2000)128<3556:LICITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welch, B. L., 1947: The generalization of “student’s” problem when several different population variances are involved. Biometrika, 34, 2835.

    • Search Google Scholar
    • Export Citation
  • Wick, G., 2015: Hurricane and Severe Storm Sentinel (HS3) Global Hawk AVAPS dropsonde system. NASA Global Hydrology Resource Center DAAC, Huntsville, AL, accessed 10 August 2016, doi:10.5067/HS3/AVAPS/DROPSONDE/DATA201.

    • Crossref
    • Export Citation
  • Willoughby, H. E., 1992: Linear motion of a shallow-water barotropic vortex as an initial-value problem. J. Atmos. Sci., 49, 20152031, doi:10.1175/1520-0469(1992)049<2015:LMOASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawislak, J., and E. J. Zipser, 2014: A multisatellite investigation of the convective properties of developing and nondeveloping tropical disturbances. Mon. Wea. Rev., 142, 46244645, doi:10.1175/MWR-D-14-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 27236 24290 388
PDF Downloads 1912 362 35