• Backhouse, W., 1885: Iridescent clouds. Nature, 31, 192193, doi:10.1038/031192d0.

  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, doi:10.1038/nature14956.

  • Browell, E. V., and et al. , 1990: Airborne lidar observations in the wintertime Arctic stratosphere: Polar stratospheric clouds. Geophys. Res. Lett., 17, 385388, doi:10.1029/GL017i004p00385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., and et al. , 1998: Increased stratospheric ozone depletion due to mountain-induced atmospheric waves. Nature, 391, 675678, doi:10.1038/35589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Liberto, L., F. Cairo, F. Fierli, G. Di Donfrancesco, M. Viterbini, T. Deshler, and M. Snels, 2014: Observation of polar stratospheric clouds over McMurdo (77.85°S, 166.67°E) (2006–2010). J. Geophys. Res. Atmos., 119, 55285541, doi:10.1002/2013JD019892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., M. Leutbecher, H. Volkert, and M. Wirth, 1998: Mesoscale forecasts of stratospheric mountain waves. Meteor. Appl., 5, 117126, doi:10.1017/S1350482798000802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., T. Birner, A. Fix, H. Flentje, A. Meister, H. Schmid, E. V. Browell, and M. J. Mahoney, 2002: Evidence for inertia gravity waves forming polar stratospheric clouds over Scandinavia. J. Geophys. Res., 107, 8287, doi:10.1029/2001JD000452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., M. C. Pitts, L. R. Poole, Y. J. Orsolini, K. Nishii, and H. Nakamura, 2012: The 2009–2010 Arctic stratospheric winter—General evolution, mountain waves and predictability of an operational weather forecast model. Atmos. Chem. Phys., 12, 36593675, doi:10.5194/acp-12-3659-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and et al. , 1996: In-situ observations of an Antarctic polar stratospheric cloud: Similarities with Arctic observations. Geophys. Res. Lett., 23, 19131916, doi:10.1029/96GL01812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and R. A. Vincent, 1989: Falling sphere observations of anisotropic gravity wave motions in the upper stratosphere over Australia. Pure Appl. Geophys., 130, 509532, doi:10.1007/BF00874472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., A. Dörnbrack, H. Flentje, S. B. Vosper, M. J. Mahoney, T. P. Bui, and K. S. Carslaw, 2006: Mountain wave–induced polar stratospheric cloud forecasts for aircraft science flights during SOLVE/THESEO 2000. Wea. Forecasting, 21, 4268, doi:10.1175/WAF901.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and et al. , 2016: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere. Bull. Amer. Meteor. Soc., 97, 425453, doi:10.1175/BAMS-D-14-00269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geelmuyden, H., 1885: Iridescent clouds. Nature, 31, 264, doi:10.1038/031264c0.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Hólm, E., R. Forbes, S. Lang, L. Magnusson, and S. Malardel, 2016: New model cycle brings higher resolution. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 14–19. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.]

  • Hu, J., R. Ren, and H. Xu, 2014: Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. J. Atmos. Sci., 71, 23192334, doi:10.1175/JAS-D-13-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, W. H., D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, 2009: CALIPSO lidar description and performance assessment. J. Atmos. Oceanic Technol., 26, 12141228, doi:10.1175/2009JTECHA1223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khaykin, S. M., A. Hauchecorne, N. Mzé, and P. Keckhut, 2015: Seasonal variation of gravity wave activity at midlatitudes from 7 years of COSMIC GPS and Rayleigh lidar temperature observations. Geophys. Res. Lett., 42, 12511258, doi:10.1002/2014GL062891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malardel, S., and N. P. Wedi, 2016: How does subgrid-scale parametrization influence nonlinear spectral energy fluxes in global NWP models? J. Geophys. Res. Atmos., 121, 53955410, doi:10.1002/2015JD023970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Z. D. Lawrence, 2016: The major stratospheric final warming in 2016: Dispersal of vortex air and termination of Arctic chemical ozone loss. Atmos. Chem. Phys., 16, 15 37115 396, doi:10.5194/acp-16-15371-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthias, V., A. Dörnbrack, and G. Stober, 2016: The extraordinarily strong and cold polar vortex in the early northern winter 2015/2016. Geophys. Res. Lett., 43, 12 28712 294, doi:10.1002/2016GL071676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maturilli, M., and A. Dörnbrack, 2006: Polar stratospheric ice cloud above Spitsbergen. J. Geophys. Res., 111, D18210, doi:10.1029/2005JD006967.

  • Mohn, H., 1893: Irisirende Wolken. Meteor. Z., 11, 8197.

  • Murphy, D. J., S. P. Alexander, A. R. Klekociuk, P. T. Love, and R. A. Vincent, 2014: Radiosonde observations of gravity waves in the lower stratosphere over Davis, Antarctica. J. Geophys. Res. Atmos., 119, 11 97311 996, doi:10.1002/2014JD022448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 2012: An Introduction to Atmospheric Gravity Waves. 2nd ed. Academic Press, 400 pp.

    • Crossref
    • Export Citation
  • Peter, T., 1997: Microphysics and heterogeneous chemistry of polar stratospheric clouds. Annu. Rev. Phys. Chem., 48, 785822, doi:10.1146/annurev.physchem.48.1.785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, D., J. Egger, and G. Entzian, 1995: Dynamical aspects of ozone mini-hole formation. Meteor. Atmos. Phys., 55, 205214, doi:10.1007/BF01029827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitts, M. C., L. W. Thomason, L. R. Poole, and D. M. Winker, 2007: Characterization of polar stratospheric clouds with spaceborne lidar: CALIPSO and the 2006 Antarctic season. Atmos. Chem. Phys., 7, 52075228, doi:10.5194/acp-7-5207-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitts, M. C., L. R. Poole, and L. W. Thomason, 2009: CALIPSO polar stratospheric cloud observations: Second-generation detection algorithm and composition discrimination. Atmos. Chem. Phys., 9, 75777589, doi:10.5194/acp-9-7577-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitts, M. C., L. R. Poole, A. Dörnbrack, and L. W. Thomason, 2011: The 2009–2010 Arctic polar stratospheric cloud season: A CALIPSO perspective. Atmos. Chem. Phys., 11, 21612177, doi:10.5194/acp-11-2161-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitts, M. C., L. R. Poole, A. Lambert, and L. W. Thomason, 2013: An assessment of CALIOP polar stratospheric cloud composition classification. Atmos. Chem. Phys., 13, 29752988, doi:10.5194/acp-13-2975-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, K. A., and et al. , 2009: CALIPSO lidar calibration algorithms. Part I: Nighttime 532-nm parallel channel and 532-nm perpendicular channel. J. Atmos. Oceanic Technol., 26, 20152033, doi:10.1175/2009JTECHA1242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichardt, J., A. Dörnbrack, S. Reichardt, P. Yang, and T. J. McGee, 2004: Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling. Atmos. Chem. Phys., 4, 11491165, doi:10.5194/acp-4-1149-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichardt, J., and et al. , 2015: Mother-of-pearl cloud particle size and composition from aircraft-based photography of coloration and lidar measurements. Appl. Opt., 54, B140B153, doi:10.1364/AO.54.00B140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosen, J. M., N. T. Kjome, V. U. Khattatov, V. V. Rudakov, and V. A. Yushkov, 1992: Observations of ozone and polar stratospheric clouds at Heiss Island during winter 1988–1989. J. Geophys. Res., 97, 80998104, doi:10.1029/91JD02524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37, 275316, doi:10.1029/1999RG900008.

  • Stanford, J. L., and J. S. Davies, 1974: A century of stratospheric cloud reports: 1870–1972. Bull. Amer. Meteor. Soc., 55, 213219, doi:10.1175/1520-0477(1974)055<0213:ACOSCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Störmer, C., 1929: Remarkable clouds at high altitudes. Nature, 123, 940941.

  • Störmer, C., 1931: Höhe und Farbverteilung der Perlmutterwolken (Height and color distribution of mother-of-pearl clouds). Geofys. Publ., IX, 325.

    • Search Google Scholar
    • Export Citation
  • Strawa, A. W., K. Drdla, M. Fromm, R. F. Pueschel, K. W. Hoppel, E. V. Browell, P. Hamill, and D. P. Dempsey, 2002: Discriminating Types Ia and Ib polar stratospheric clouds in POAM satellite data. J. Geophys. Res., 107, 8291, doi:10.1029/2001JD000458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teitelbaum, H., and R. Sadourny, 1998: The role of planetary waves in the formation of polar stratospheric clouds. Tellus, 50A, 302312, doi:10.1034/j.1600-0870.1998.t01-2-00004.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 7
PDF Downloads 32 32 10

Multilevel Cloud Structures over Svalbard

View More View Less
  • 1 Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen, Wessling, Germany
  • | 2 NASA Langley Research Center, Hampton, Virginia
  • | 3 Science Systems and Applications, Inc., Hampton, Virginia
  • | 4 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
© Get Permissions
Restricted access

Abstract

The presented picture of the month is a superposition of spaceborne lidar observations and high-resolution temperature fields of the ECMWF Integrated Forecast System (IFS). It displays complex tropospheric and stratospheric clouds in the Arctic winter of 2015/16. Near the end of December 2015, the unusual northeastward propagation of warm and humid subtropical air masses as far north as 80°N lifted the tropopause by more than 3 km in 24 h and cooled the stratosphere on a large scale. A widespread formation of thick cirrus clouds near the tropopause and of synoptic-scale polar stratospheric clouds (PSCs) occurred as the temperature dropped below the thresholds for the existence of cloud particles. Additionally, mountain waves were excited by the strong flow at the western edge of the ridge across Svalbard, leading to the formation of mesoscale ice PSCs. The most recent IFS cycle using a horizontal resolution of 8 km globally reproduces the large-scale and mesoscale flow features and leads to a remarkable agreement with the wave structure revealed by the spaceborne observations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Andreas Dörnbrack, andreas.doernbrack@dlr.de

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Abstract

The presented picture of the month is a superposition of spaceborne lidar observations and high-resolution temperature fields of the ECMWF Integrated Forecast System (IFS). It displays complex tropospheric and stratospheric clouds in the Arctic winter of 2015/16. Near the end of December 2015, the unusual northeastward propagation of warm and humid subtropical air masses as far north as 80°N lifted the tropopause by more than 3 km in 24 h and cooled the stratosphere on a large scale. A widespread formation of thick cirrus clouds near the tropopause and of synoptic-scale polar stratospheric clouds (PSCs) occurred as the temperature dropped below the thresholds for the existence of cloud particles. Additionally, mountain waves were excited by the strong flow at the western edge of the ridge across Svalbard, leading to the formation of mesoscale ice PSCs. The most recent IFS cycle using a horizontal resolution of 8 km globally reproduces the large-scale and mesoscale flow features and leads to a remarkable agreement with the wave structure revealed by the spaceborne observations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Andreas Dörnbrack, andreas.doernbrack@dlr.de

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Save