• Ali, M. M., P. S. V. Jagadeesh, and S. Jain, 2007: Effects of eddies on Bay of Bengal cyclone intensity. Eos, Trans. Amer. Geophys. Union, 88, 9395, doi:10.1029/2007EO080001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., J. M. Wilczak, J.-K. Choi, and H. Kantha, 2000: Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 21902210, doi:10.1175/1520-0493(2000)128<2190:NSOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., and I. Ginis, 2000: Real-case simulation of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946, doi:10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, doi:10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., Y. Duan, and L. K. Shay, 2001: Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. J. Atmos. Sci., 58, 154172, doi:10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, doi:10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., T. J. Campbell, H. Jin, S. Gabersek, R. M. Hodur, and P. Martin, 2010: Effect of two-way air–sea coupling in high and low wind speed regimes. Mon. Wea. Rev., 138, 35793602, doi:10.1175/2009MWR3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, doi:10.1175//2562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., 2003: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561579, doi:10.1175/1520-0485(2003)033<0561:TOBLBH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, E. L., 1958: Hurricane and the sea surface temperature field. J. Meteor., 15, 328333, doi:10.1175/1520-0469(1958)015<0328:HATSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentry, M. S., and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688704, doi:10.1175/2009MWR2976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Halliwell, G. R., S. Gopalakrishnan, F. Marks, and D. Willey, 2015: Idealized study of ocean impacts on tropical cyclone intensity forecasts. Mon. Wea. Rev., 143, 11421165, doi:10.1175/MWR-D-14-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, X., S. W. Chang, S. Raman, L. K. Shay, and R. Hodur, 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128, 13471365, doi:10.1175/1520-0493(2000)128<1347:TIBHOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., I.-I. Lin, C. Chou, and R.-H. Huang, 2015: Changes in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat. Commun., 6, 7188, doi:10.1038/ncomms8188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., and L. K. Shay, 2003: The role of oceanic mesoscale features on the tropical cyclone–induced mixed layer response: A case study. J. Phys. Oceanogr., 33, 649676, doi:10.1175/1520-0485(2003)33<649:TROOMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 41884207, doi:10.1175/2009MWR2849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2010: Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. J. Phys. Oceanogr., 40, 13201337, doi:10.1175/2010JPO4309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2015: Enhanced wind-driven downwelling flow in warm oceanic eddy features during the intensification of Tropical Cyclone Isaac (2012): Observations and theory. J. Phys. Oceanogr., 45, 16671689, doi:10.1175/JPO-D-14-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and G. R. Halliwell, 2011: The response of quasigeostrophic oceanic vortices to tropical cyclone forcing. J. Phys. Oceanogr., 41, 19651985, doi:10.1175/JPO-D-11-06.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and E. W. Uhlhorn, 2015: Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Wea. Rev., 143, 111131, doi:10.1175/MWR-D-13-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and J. K. Brewster, 2016: Observed air-sea interactions in tropical cyclone Isaac over Loop Current mesoscale eddy features. Dyn. Atmos. Oceans, 76, 306324, doi:10.1016/j.dynatmoce.2016.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, M. DeMaria, T. P. Marchok, J. M. Gross, and C. J. McAdie, 2007: Statistical tropical cyclone wind radii prediction using climatology and persistence. Wea. Forecasting, 22, 781791, doi:10.1175/WAF1026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, J., R. Jacob, and E. Ong, 2005: The model coupling toolkit: A new Fortran90 toolkit for building multiphysics parallel coupled models. Int. J. High Perform. Comput. Appl., 19, 277292, doi:10.1177/1094342005056115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., and S. Chen, 2014: Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Mon. Wea. Rev., 142, 19271944, doi:10.1175/MWR-D-13-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-S., K. Cheung, W. Fang, and R. Elsberry, 2010: Initial maintenance of tropical cyclone size in the western North Pacific. Mon. Wea. Rev., 138, 32073223, doi:10.1175/2010MWR3023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, doi:10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I.-F. Pum, 2005: The interaction of Supertyphoon Maemi with a warm ocean eddy. Mon. Wea. Rev., 133, 26352649, doi:10.1175/MWR3005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., M.-D. Chou, and C.-C. Wu, 2011: The impact of a warm ocean eddy on Typhoon Morakot (2009): A preliminary study from satellite observations and numerical modeling. Terr. Atmos. Oceanic Sci., 22, 661671, doi:10.3319/TAO.2011.08.19.01(TM).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., and et al. , 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 18781882, doi:10.1002/grl.50091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, I. D., and G. A. Vecchi, 2011: Observational evidence for oceanic controls on hurricane intensity. J. Climate, 24, 11381153, doi:10.1175/2010JCLI3763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., J. Fei, L. Liu, X. Huang, and X. Cheng, 2013a: Effects of the cold core eddy on tropical cyclone intensity and structure under idealized air–sea interaction conditions. Mon. Wea. Rev., 141, 12851303, doi:10.1175/MWR-D-12-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., J. Fei, X. Huang, and X. Cheng, 2013b: The effects of ocean feedback on tropical cyclone energetics under idealized air-sea interaction conditions. J. Geophys. Res. Atmos., 118, 97789788, doi:10.1002/jgrd.50780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricane. Tellus, 12, 120, doi:10.1111/j.2153-3490.1960.tb01279.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, Q., S. Chang, and R. L. Pfeffer, 2000: Influence of large-scale initial ocean mixed layer depth tropical cyclones. Mon. Wea. Rev., 128, 40584070, doi:10.1175/1520-0493(2000)129<4058:IOLSIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., L. F. Bosart, J. R. Gyakum, and E. H. Atallah, 2007: Hurricane Katrina (2005). Part I: Complex life cycle of an intense tropical cyclone. Mon. Wea. Rev., 135, 39053926, doi:10.1175/2007MWR1875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., and C. Pasquero, 2013: Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Climate, 26, 37453765, doi:10.1175/JCLI-D-12-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 2004: Users guide for a three-dimensional, primitive equation, numerical ocean model (June 2004 version). Program in Atmospheric and Oceanic Science, Princeton University, 56 pp.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, doi:10.1175/JAS3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patnaik, K., K. Maneesha, Y. Sadhuram, K. Prasad, T. Murty, and V. Rao, 2014: East India coastal current induced eddies and their interaction with tropical storms over Bay of Bengal. J. Oper. Oceanogr., 7, 5868, doi:10.1080/1755876X.2014.11020153.

    • Search Google Scholar
    • Export Citation
  • Pickard, G. L., and W. J. Emery, 1990: Descriptive Physical Oceanography. Pergamon Press, 320 pp.

    • Crossref
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29, 24712486, doi:10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. Smith, C. Liu, D. Chelton, K. Casey, and M. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2001: Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability? J. Phys. Oceanogr., 31, 675687, doi:10.1175/1520-0485(2001)031<0675:ETOHAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, doi:10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, doi:10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, R., R. A. Anthes, and M. Garstang, Eds., 2002: Hurricane! Coping with Disaster: Progress and Challenges since Galveston. American Geophysical Union, 360 pp.

    • Crossref
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stramma, R. S., P. Cornillon, and J. F. Price, 1986: Satellite observation of sea surface cooling by hurricanes. J. Geophys. Res., 91, 50315035, doi:10.1029/JC091iC04p05031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2016: Evaluation of atmosphere and ocean initial condition uncertainty and stochastic exchange coefficients on ensemble tropical cyclone intensity forecasts. Mon. Wea. Rev., 144, 34873506, doi:10.1175/MWR-D-16-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vianna, M. L., V. V. Menezes, A. B. Pezza, and I. Simmonds, 2010: Interactions between Hurricane Catarina (2004) and warm core rings in the South Atlantic Ocean. J. Geophys. Res., 115, C07002, doi:10.1029/2009JC005974.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., C.-Y. Lee, and I.-I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 35623578, doi:10.1175/JAS4051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., B. Wang, and S. A. Braun, 2005: Impact of air–sea interaction on tropical cyclone track and intensity. Mon. Wea. Rev., 133, 32993314, doi:10.1175/MWR3030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2008: Improving the ocean initialization of coupled hurricane–ocean models using feature-based data assimilation. Mon. Wea. Rev., 136, 25922607, doi:10.1175/2007MWR2166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2013: Impact of a warm ocean eddy’s circulation on hurricane-induced sea surface cooling with implications for hurricane intensity. Mon. Wea. Rev., 141, 9971021, doi:10.1175/MWR-D-12-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zedler, S. E., T. D. Dickey, S. C. Doney, J. F. Price, X. Yu, and G. L. Mellor, 2002: Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site: 13–23 August 1995. J. Geophys. Res., 107, 3232, doi:10.1029/2001JC000969.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 100 100 9
PDF Downloads 85 85 6

An Investigation of the Influences of Mesoscale Ocean Eddies on Tropical Cyclone Intensities

View More View Less
  • 1 College of Meteorology and Oceanography, National University of Defense Technology, and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China
  • | 3 Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

The impact of mesoscale ocean eddies on tropical cyclone intensities is investigated based on a combination of observations and atmosphere–ocean coupling simulations. A statistical analysis reveals that the tropical cyclone–eddy interactions occur at very high frequencies; over 90% of the recorded tropical cyclones over the western North Pacific have encountered ocean eddies from 2002 to 2011. The chances of confronting a cold core eddy (CCE) are slightly larger than confronting a warm core eddy (WCE). The observational sea surface temperature data have statistically evidenced that CCEs tend to promote the sea surface temperature decrease caused by tropical cyclones while WCEs tend to restrain such ocean responses. The roles of CCEs are statistically more significant than those of WCEs in modulating the sea surface temperature response. It is therefore proposed that CCEs should be paid no less attention than WCEs during the TC–ocean interaction process. The CCE-induced changes in sea surface temperature decreases are observed to be more remarkable for more intense and slower-moving tropical cyclones and for thinner depth of mixed layers. A set of numerical experiments reveal that the effects of ocean eddies are positively related to their strengths and storm intensities, and the eddy feedback is less pronounced when the eddy is located at one side of storm tracks than right below the tropical cyclone center. The eddy-induced moisture disequilibrium sooner vanishes after the departure of tropical cyclones. The intensity recoveries last for 1–2 days because of the dependence of surface enthalpy fluxes on surface winds.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Zhanhong Ma, hongzhanm@163.com

Abstract

The impact of mesoscale ocean eddies on tropical cyclone intensities is investigated based on a combination of observations and atmosphere–ocean coupling simulations. A statistical analysis reveals that the tropical cyclone–eddy interactions occur at very high frequencies; over 90% of the recorded tropical cyclones over the western North Pacific have encountered ocean eddies from 2002 to 2011. The chances of confronting a cold core eddy (CCE) are slightly larger than confronting a warm core eddy (WCE). The observational sea surface temperature data have statistically evidenced that CCEs tend to promote the sea surface temperature decrease caused by tropical cyclones while WCEs tend to restrain such ocean responses. The roles of CCEs are statistically more significant than those of WCEs in modulating the sea surface temperature response. It is therefore proposed that CCEs should be paid no less attention than WCEs during the TC–ocean interaction process. The CCE-induced changes in sea surface temperature decreases are observed to be more remarkable for more intense and slower-moving tropical cyclones and for thinner depth of mixed layers. A set of numerical experiments reveal that the effects of ocean eddies are positively related to their strengths and storm intensities, and the eddy feedback is less pronounced when the eddy is located at one side of storm tracks than right below the tropical cyclone center. The eddy-induced moisture disequilibrium sooner vanishes after the departure of tropical cyclones. The intensity recoveries last for 1–2 days because of the dependence of surface enthalpy fluxes on surface winds.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Zhanhong Ma, hongzhanm@163.com
Save