Comments on “Multiscale Structure and Evolution of Hurricane Earl (2010) during Rapid Intensification”

Russell L. Elsberry University of Colorado Colorado Springs, Colorado Springs, Colorado

Search for other papers by Russell L. Elsberry in
Current site
Google Scholar
PubMed
Close
and
Myung-Sook Park Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Myung-Sook Park in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This comment addresses the Tropical Storm (TS) Earl upper-level vortex structure changes during a critical stage leading to the onset of rapid intensification as described by Rogers et al. Whereas the first NOAA WP-3D mission in TS Earl provided evidence of a shallow, broad vortex structure, the second WP-3D mission just 12 h later documented a deep, vertically stacked vortex undergoing rapid intensification. The authors attribute this vortex structure change to vertical alignment processes between the low-level Earl vortex and an upper-tropospheric mesoscale vortex about 50 km to the east in the mission 1 analyses.

An alternate environmental control explanation is proposed in which a special kind of upper-tropospheric vertical wind shear (VWS) associated with the outflow of Hurricane Danielle to the northwest of TS Earl is the primary factor. Two estimates of the vertical wind shear changes are interpreted relative to the diurnal convective maximum/minimum to explain how the shallow vortex during mission 1 may have been created. It is proposed that the vigorous convection over sea surface temperatures of about 30°C during the diurnal convective maximum period between mission 1 and mission 2 was able to offset the moderate VWS as Hurricane Danielle had moved farther away from Earl. Thus, an explanation for the vertically stacked TS Earl vortex observed during mission 2 in terms of an environmental VWS modulation of the diurnally varying convective processes is proposed as an alternative to a vortex realignment.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Russell L. Elsberry, elsberrylr@comcast.net

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-14-00175.1.

Abstract

This comment addresses the Tropical Storm (TS) Earl upper-level vortex structure changes during a critical stage leading to the onset of rapid intensification as described by Rogers et al. Whereas the first NOAA WP-3D mission in TS Earl provided evidence of a shallow, broad vortex structure, the second WP-3D mission just 12 h later documented a deep, vertically stacked vortex undergoing rapid intensification. The authors attribute this vortex structure change to vertical alignment processes between the low-level Earl vortex and an upper-tropospheric mesoscale vortex about 50 km to the east in the mission 1 analyses.

An alternate environmental control explanation is proposed in which a special kind of upper-tropospheric vertical wind shear (VWS) associated with the outflow of Hurricane Danielle to the northwest of TS Earl is the primary factor. Two estimates of the vertical wind shear changes are interpreted relative to the diurnal convective maximum/minimum to explain how the shallow vortex during mission 1 may have been created. It is proposed that the vigorous convection over sea surface temperatures of about 30°C during the diurnal convective maximum period between mission 1 and mission 2 was able to offset the moderate VWS as Hurricane Danielle had moved farther away from Earl. Thus, an explanation for the vertically stacked TS Earl vortex observed during mission 2 in terms of an environmental VWS modulation of the diurnally varying convective processes is proposed as an alternative to a vortex realignment.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Russell L. Elsberry, elsberrylr@comcast.net

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-14-00175.1.

Save
  • Braun, S. A., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345363, doi:10.1175/BAMS-D-11-00232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305, doi:10.1175/JAS-D-11-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, doi:10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and R. Jeffries, 1996: Vertical wind shear influences on tropical cyclone formation and intensification during TCM-92 and TCM-93. Mon. Wea. Rev., 124, 13741387, doi:10.1175/1520-0493(1996)124<1374:VWSIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., 1997: Evaluation of a fully three-dimensional variational Doppler analysis technique. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 422–423.

  • Park, M.-S., R. L. Elsberry, and P. A. Harr, 2012: Vertical wind shear and ocean heat content as environmental modulators of western North Pacific tropical cyclone intensification and decay. Trop. Cyclone Res. Rev., 1, 448457, doi:10.6057/2012TCRR04.03.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical wind shear: Vortex resiliency. J. Atmos. Sci., 61, 322, doi:10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, doi:10.1175/2008MWR2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, doi:10.1175/MWR-D-14-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglick, D. R., J. D. Doyle, and J. Cossuth, 2016: Satellite signatures of six TCs which rapidly intensified in shear. 32nd Conf. on Hurricane and Tropical Meteorology, San Juan, Puerto Rico, Amer. Meteor. Soc. [Available online at https://ams.confex.com/ams/32Hurr/webprogram/Paper292670.html.]

  • SHIPS, 2016: SHIPS developmental data. Accessed 12 August 2016. [Available online at http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/developmental_data.asp.]

  • Velden, C. S., and J. Sears, 2014: Computing deep-tropospheric vertical wind shear analyses for tropical cyclone applications: Does the methodology matter? Wea. Forecasting, 29, 11691180, doi:10.1175/WAF-D-13-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 690 239 25
PDF Downloads 295 77 22