Probabilistic Precipitation-Type Forecasting Based on GEFS Ensemble Forecasts of Vertical Temperature Profiles

Michael Scheuerer University of Colorado, Cooperative Institute for Research in Environmental Sciences, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Michael Scheuerer in
Current site
Google Scholar
PubMed
Close
,
Scott Gregory University of Colorado, Cooperative Institute for Research in Environmental Sciences, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Scott Gregory in
Current site
Google Scholar
PubMed
Close
,
Thomas M. Hamill Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Thomas M. Hamill in
Current site
Google Scholar
PubMed
Close
, and
Phillip E. Shafer Meteorological Development Laboratory, NOAA/NWS/OST, Silver Spring, Maryland

Search for other papers by Phillip E. Shafer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A Bayesian classification method for probabilistic forecasts of precipitation type is presented. The method considers the vertical wet-bulb temperature profiles associated with each precipitation type, transforms them into their principal components, and models each of these principal components by a skew normal distribution. A variance inflation technique is used to de-emphasize the impact of principal components corresponding to smaller eigenvalues, and Bayes’s theorem finally yields probability forecasts for each precipitation type based on predicted wet-bulb temperature profiles. This approach is demonstrated with reforecast data from the Global Ensemble Forecast System (GEFS) and observations at 551 METAR sites, using either the full ensemble or the control run only. In both cases, reliable probability forecasts for precipitation type being either rain, snow, ice pellets, freezing rain, or freezing drizzle are obtained. Compared to the model output statistics (MOS) approach presently used by the National Weather Service, the skill of the proposed method is comparable for rain and snow and significantly better for the freezing precipitation types.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Michael Scheuerer, michael.scheuerer@noaa.gov

Abstract

A Bayesian classification method for probabilistic forecasts of precipitation type is presented. The method considers the vertical wet-bulb temperature profiles associated with each precipitation type, transforms them into their principal components, and models each of these principal components by a skew normal distribution. A variance inflation technique is used to de-emphasize the impact of principal components corresponding to smaller eigenvalues, and Bayes’s theorem finally yields probability forecasts for each precipitation type based on predicted wet-bulb temperature profiles. This approach is demonstrated with reforecast data from the Global Ensemble Forecast System (GEFS) and observations at 551 METAR sites, using either the full ensemble or the control run only. In both cases, reliable probability forecasts for precipitation type being either rain, snow, ice pellets, freezing rain, or freezing drizzle are obtained. Compared to the model output statistics (MOS) approach presently used by the National Weather Service, the skill of the proposed method is comparable for rain and snow and significantly better for the freezing precipitation types.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Michael Scheuerer, michael.scheuerer@noaa.gov
Save
  • Allen, R. L., and M. C. Erickson, 2001a: AVN-based MOS precipitation type guidance for the United States. NWS Tech. Procedures Bull. 476, NOAA, U.S. Dept. of Commerce, 8 pp.

  • Allen, R. L., and M. C. Erickson, 2001b: MRF-based MOS precipitation type guidance for the United States. NWS Tech. Procedures Bull. 485, NOAA, U.S. Dept. of Commerce, 8 pp.

  • Azzalini, A., and A. Capitanio, 1999: Statistical applications of the multivariate skew normal distribution. J. Roy. Stat. Soc., 61B, 579602, doi:10.1111/1467-9868.00194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M., R. Treadon, and S. Contorno, 1994: Precipitation type prediction using a decision tree approach with NMCs mesoscale eta model. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 30–31.

  • Benjamin, S. G., J. M. Brown, and T. G. Smirnova, 2016: Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud-precipitation microphysics parameterization. Wea. Forecasting, 31, 609619, doi:10.1175/WAF-D-15-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgouin, P., 2000: A method to determine precipitation type. Wea. Forecasting, 15, 583592, doi:10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., Z. L. Flamig, V. Lakshmanan, B. T. Kaney, V. Farmer, H. D. Reeves, and L. S. Rothfusz, 2014: mPING: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95, 13351342, doi:10.1175/BAMS-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., H. M. Grams, D. Apps, and H. D. Reeves, 2015: Verifying forecast precipitation type with mPING. Wea. Forecasting, 30, 656667, doi:10.1175/WAF-D-14-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedman, J. H., 1989: Regularized discriminant analysis. J. Amer. Stat. Assoc., 84, 165175, doi:10.1080/01621459.1989.10478752.

  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau, Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, doi:10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodyss, D., E. Satterfield, J. McLay, T. M. Hamill, and M. Scheuerer, 2016: Inaccuracies with multimodel postprocessing methods involving weighted, regression-corrected forecasts. Mon. Wea. Rev., 144, 16491668, doi:10.1175/MWR-D-15-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramer, J., 1993: An empirical technique for diagnosing precipitation type from model output. Preprints, Fifth Int. Conf. on Aviation Weather Systems, Vienna, VA, Amer. Meteor. Soc., 227–230.

  • Ranjan, R., and T. Gneiting, 2010: Combining probability forecasts. J. Roy. Stat. Soc., 72B, 7191, doi:10.1111/j.1467-9868.2009.00726.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., K. L. Elmore, A. V. Ryzhkof, T. J. Schuur, and J. Krause, 2014: Sources of uncertainty in precipitation-type forecasting. Wea. Forecasting, 29, 936953, doi:10.1175/WAF-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., A. V. Ryzhkof, and J. Krause, 2016: Discrimination between winter precipitation types based on spectral-bin microphysical modeling. J. Appl. Meteor. Climatol., 55, 17471761, doi:10.1175/JAMC-D-16-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., H.-S. Park, A. V. Ryzhkof, and H. D. Reeves, 2012: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol., 51, 763779, doi:10.1175/JAMC-D-11-091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shafer, P. E., 2010: Logit transforms in forecasting precipitation type. 20th Conf. on Probability and Statistics in the Atmospheric Sciences, Atlanta, GA, Amer. Meteor. Soc., P222. [Available online at https://ams.confex.com/ams/90annual/webprogram/Paper158479.html.]

  • Shafer, P. E., 2015: A sample size sensitivity test for MOS precipitation type. Special Symp. on Model Postprocessing and Downscaling, Phoenix, AZ, Amer. Meteor. Soc., 4.1. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper261459.html.]

  • Stewart, R. E., J. M. Thériault, and W. Henson, 2015: On the characteristics of and processes producing winter precipitation types near 0°C. Bull. Amer. Meteor. Soc., 96, 623639, doi:10.1175/BAMS-D-14-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4580 3843 100
PDF Downloads 659 82 11