• Anderson, G., and D. Klugmann, 2014: A European lightning density analysis using 5 years of ATDnet data. Nat. Hazards Earth Syst. Sci., 14, 815829, doi:10.5194/nhess-14-815-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antonescu, B., D. M. Schultz, F. Lomas, and T. Kühne, 2016: Tornadoes in Europe: Synthesis of the observational datasets. Mon. Wea. Rev., 144, 24452480, doi:10.1175/MWR-D-15-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beebe, R. G., 1955: Types of airmasses in which tornadoes occur. Bull. Amer. Meteor. Soc., 36, 349350.

  • Beebe, R. G., 1958: Tornado proximity soundings. Bull. Amer. Meteor. Soc., 39, 195201.

  • Berthet, C., E. Wesolek, J. Dessens, and J. L. Sanchez, 2013: Extreme hail day climatology in Southwestern France. Atmos. Res., 123, 139150, doi:10.1016/j.atmosres.2012.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2009: Proximity soundings for severe convection for Europe and the United States from reanalysis data. Atmos. Res., 93, 546553, doi:10.1016/j.atmosres.2008.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2013: Severe thunderstorms and climate change. Atmos. Res., 123, 129138, doi:10.1016/j.atmosres.2012.04.002.

  • Brooks, H. E., and R. B. Wilhelmson, 1993: Hodograph curvature and updraft intensity in numerically modeled supercells. J. Atmos. Sci., 50, 18241833, doi:10.1175/1520-0469(1993)050<1824:HCAUII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606618, doi:10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, doi:10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, doi:10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, and J. W. Zeitler, 2002: The importance of parcel choice and the measure of vertical wind shear in evaluating the convective environment. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 379–382.

  • Celiński-Mysław, D., and D. Matuszko, 2014: An analysis of selected cases of derecho in Poland. Atmos. Res., 149, 263281, doi:10.1016/j.atmosres.2014.06.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. R., 2009: The southern England tornadoes of 30 December 2006: Case study of a tornadic storm in a low CAPE, high shear environment. Atmos. Res., 93, 5065, doi:10.1016/j.atmosres.2008.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and M. B. Richman, 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19, 320337, doi:10.1175/1520-0434(2004)019<0320:AOSODC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., S. J. Corfidi, D. A. Imy, and A. L. Logan, 2006: A preliminary study of severe wind-producing MCSs in environments of limited moisture. Wea. Forecasting, 21, 715734, doi:10.1175/WAF947.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J. P., and H. E. Brooks, 2004: Baseline climatology of sounding derived parameters associated with deep moist convection. Natl. Wea. Dig., 28, 1324. [Available online at http://www.nssl.noaa.gov/users/brooks/public_html/papers/cravenbrooksnwa.pdf.]

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., R. E. Jewell, and H. E. Brooks, 2002: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17, 885890, doi:10.1175/1520-0434(2002)017<0885:CBOCCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czernecki, B., M. Taszarek, L. Kolendowicz, and J. Konarski, 2016: Relationship between human observations of thunderstorms and the PERUN lightning detection network in Poland. Atmos. Res., 167, 118128, doi:10.1016/j.atmosres.2015.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darkow, G. L., 1969: An analysis of over sixty tornado proximity soundings. Preprints, Sixth Conf. on Severe Local Storms, Chicago, IL, Amer. Meteor. Soc., 218–221.

  • Davies, J. M., and R. H. Johns, 1993: Some wind and instability parameters associated with strong and violent tornadoes: 1. Wind shear and helicity. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 573–582, doi:10.1029/GM079.

    • Crossref
    • Export Citation
  • Doswell, C. A., III, and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625629, doi:10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and J. S. Evans, 2003: Proximity sounding analysis for derechos and supercells: An assessment of similarities and differences. Atmos. Res., 67–68, 117133, doi:10.1016/S0169-8095(03)00047-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dotzek, N., P. Groenemeijer, B. Feuerstein, and A. M. Holzer, 2009: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575586, doi:10.1016/j.atmosres.2008.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., and R. L. Thompson, 1998: Nationwide comparisons of hail size with WSR-88D vertically integrated liquid water and derived thermodynamic sounding data. Wea. Forecasting, 13, 277285, doi:10.1175/1520-0434(1998)013<0277:NCOHSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342, doi:10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, M., 2010: An examination of low CAPE/high shear severe convective events in the Binghamton, New York county warning area. Natl. Wea. Dig., 34, 129144.

    • Search Google Scholar
    • Export Citation
  • Fawbush, E. J., and R. C. Miller, 1952: A mean sounding representative of the tornadic airmass environment. Bull. Amer. Meteor. Soc., 35, 303307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fawbush, E. J., and R. C. Miller, 1954: The types of air masses in which North American tornadoes form. Bull. Amer. Meteor. Soc., 35, 154165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1971: Proposed characterization of tornadoes and hurricanes by area and intensity. SMRP Research Paper 91, University of Chicago, 42 pp.

  • Fujita, T. T., 1990: Downbursts: Meteorological features and wind field characteristics. J. Wind Eng. Ind. Aerodyn., 36, 7586, doi:10.1016/0167-6105(90)90294-M.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatzen, C., 2011: A 10-year climatology of cold-season narrow cold-frontal rainbands in Germany. Atmos. Res., 100, 366370, doi:10.1016/j.atmosres.2010.09.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatzen, C., T. Púčik, and D. Ryva, 2011: Two cold-season derechoes in Europe. Atmos. Res., 100, 740748, doi:10.1016/j.atmosres.2010.11.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, J. S., R. L. Thompson, D. V. Snively, J. A. Prentice, G. M. Hodges, and L. J. Reames, 2012: A climatology and comparison of parameters for significant tornado events in the United States. Wea. Forecasting, 27, 106123, doi:10.1175/WAF-D-11-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groenemeijer, P. H., and A. van Delden, 2007: Sounding-derived parameters associated with large hail and tornadoes in the Netherlands. Atmos. Res., 83, 473487, doi:10.1016/j.atmosres.2005.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groenemeijer, P. H., and T. Kühne, 2014: A climatology of tornadoes in Europe: Results from the European Severe Weather Database. Mon. Wea. Rev., 142, 47754790, doi:10.1175/MWR-D-14-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grünwald, S., and H. E. Brooks, 2011: Relationship between sounding derived parameters and the strength of tornadoes in Europe and the USA from reanalysis data. Atmos. Res., 100, 479488, doi:10.1016/j.atmosres.2010.11.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, J. D., and S. E. Oliver, 2000: An empirical model of a downburst. Eng. Struct., 22, 11671172, doi:10.1016/S0141-0296(99)00058-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, doi:10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaltenböck, R., G. Diendorfer, and N. Dotzek, 2009: Evaluation of thunderstorm indices from ECMWF analyses, lightning data and severe storm reports. Atmos. Res., 93, 381396, doi:10.1016/j.atmosres.2008.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keul, A. G., M. V. Sioutas, and W. Szilagyi, 2009: Prognosis of central-eastern Mediterranean waterspouts. Atmos. Res., 93, 426436, doi:10.1016/j.atmosres.2008.10.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2009: Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 310, doi:10.1016/j.atmosres.2008.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., S. A. Rutledge, and R. E. Orville, 1996: Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon. Wea. Rev., 124, 602620, doi:10.1175/1520-0493(1996)124<0602:CTGLOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203218, doi:10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Púčik, T., 2016: Future changes in severe thunderstorm environments over Europe. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 2.2. [Available online at https://ams.confex.com/ams/28SLS/webprogram/Paper300871.html.]

  • Púčik, T., P. Groenemeijer, D. Rýva, and M. Kolář, 2015: Proximity soundings of severe and nonsevere thunderstorms in central Europe. Mon. Wea. Rev., 143, 48054821, doi:10.1175/MWR-D-15-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and R. B. Wilhelmson, 1983: Relationships between storm characteristics and 1200 GMT hodographs, low-level shear, and stability. Preprints, 13th Conf. on Severe Local Storms, Tulsa, OK, Amer. Meteor. Soc., J5–J8.

  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renko, T., T. Kozarić, and M. Tudor, 2013: An assessment of waterspout occurrence in the Eastern Adriatic basin in 2010: Synoptic and mesoscale environment and forecasting method. Atmos. Res., 123, 7181, doi:10.1016/j.atmosres.2012.06.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renko, T., J. Kuzmić, V. Šoljan, and N. S. Mahović, 2016: Waterspouts in the Eastern Adriatic from 2001 to 2013. Nat. Hazards, 82, 441470, doi:10.1007/s11069-016-2192-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., and M. D. Parker, 2014: Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments. Wea. Forecasting, 29, 854877, doi:10.1175/WAF-D-13-00041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Monogr. on Statistics and Applied Probability, Vol. 26, Chapman and Hall/CRC Press, 176 pp.

  • Sioutas, M., W. Szilagyi, and A. Keul, 2013: Waterspout outbreaks over areas of Europe and North America: Environment and predictability. Atmos. Res., 123, 167179, doi:10.1016/j.atmosres.2012.09.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, doi:10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szilagyi, W., 2009: A waterspout forecasting technique. Preprints, Fifth European Conf. on Severe Storms, Landshut, Germany, ECSS/European Meteorological Society, 1216.

  • Taszarek, M., and L. Kolendowicz, 2013: Sounding-derived parameters associated with tornado occurrence in Poland and Universal Tornadic Index. Atmos. Res., 134, 186197, doi:10.1016/j.atmosres.2013.07.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taszarek, M., B. Czernecki, and A. Kozioł, 2015: A cloud-to-ground lightning climatology for Poland. Mon. Wea. Rev., 143, 42854304, doi:10.1175/MWR-D-15-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, doi:10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, A. R. Dean, and P. T. Marsh, 2013: Spatial distributions of tornadic near-storm environments by convective mode. Electron. J. Severe Storms Meteor., 8 (5). [Available online at http://ejssm.org/ojs/index.php/ejssm/article/viewArticle/125.]

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1985: Forecasting dry microburst activity over the high plains. Mon. Wea. Rev., 113, 11311143, doi:10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wapler, K., 2013: High-resolution climatology of lightning characteristics within Central Europe. Meteor. Atmos. Phys., 122, 175184, doi:10.1007/s00703-013-0285-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 284 284 31
PDF Downloads 238 238 27

Sounding-Derived Parameters Associated with Convective Hazards in Europe

View More View Less
  • 1 Department of Climatology, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, Poznań, and Skywarn Poland, Warsaw, Poland
  • | 2 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 Department of Climatology, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, Poznań, Poland
© Get Permissions
Restricted access

Abstract

Observed proximity soundings from Europe are used to highlight how well environmental parameters discriminate different kind of severe thunderstorm hazards. In addition, the skill of parameters in predicting lightning and waterspouts is also tested. The research area concentrates on central and western European countries and the years 2009–15. In total, 45 677 soundings are analyzed including 169 associated with extremely severe thunderstorms, 1754 with severe thunderstorms, 8361 with nonsevere thunderstorms, and 35 393 cases with nonzero convective available potential energy (CAPE) that had no thunderstorms. Results indicate that the occurrence of lightning is mainly a function of CAPE and is more likely when the temperature of the equilibrium level drops below −10°C. The probability for large hail is maximized with high values of boundary layer moisture, steep mid- and low-level lapse rates, and high lifting condensation level. The size of hail is mainly dependent on the deep layer shear (DLS) in a moderate to high CAPE environment. The likelihood of tornadoes increases along with increasing CAPE, DLS, and 0–1-km storm-relative helicity. Severe wind events are the most common in high vertical wind shear and steep low-level lapse rates. The probability for waterspouts is maximized in weak vertical wind shear and steep low-level lapse rates. Wind shear in the 0–3-km layer is the best at distinguishing between severe and extremely severe thunderstorms producing tornadoes and convective wind gusts. A parameter WMAXSHEAR multiplying square root of 2 times CAPE (WMAX) and DLS turned out to be the best in distinguishing between nonsevere and severe thunderstorms, and for assessing the severity of convective phenomena.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Mateusz Taszarek, mateusz.taszarek@amu.edu.pl

Abstract

Observed proximity soundings from Europe are used to highlight how well environmental parameters discriminate different kind of severe thunderstorm hazards. In addition, the skill of parameters in predicting lightning and waterspouts is also tested. The research area concentrates on central and western European countries and the years 2009–15. In total, 45 677 soundings are analyzed including 169 associated with extremely severe thunderstorms, 1754 with severe thunderstorms, 8361 with nonsevere thunderstorms, and 35 393 cases with nonzero convective available potential energy (CAPE) that had no thunderstorms. Results indicate that the occurrence of lightning is mainly a function of CAPE and is more likely when the temperature of the equilibrium level drops below −10°C. The probability for large hail is maximized with high values of boundary layer moisture, steep mid- and low-level lapse rates, and high lifting condensation level. The size of hail is mainly dependent on the deep layer shear (DLS) in a moderate to high CAPE environment. The likelihood of tornadoes increases along with increasing CAPE, DLS, and 0–1-km storm-relative helicity. Severe wind events are the most common in high vertical wind shear and steep low-level lapse rates. The probability for waterspouts is maximized in weak vertical wind shear and steep low-level lapse rates. Wind shear in the 0–3-km layer is the best at distinguishing between severe and extremely severe thunderstorms producing tornadoes and convective wind gusts. A parameter WMAXSHEAR multiplying square root of 2 times CAPE (WMAX) and DLS turned out to be the best in distinguishing between nonsevere and severe thunderstorms, and for assessing the severity of convective phenomena.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Mateusz Taszarek, mateusz.taszarek@amu.edu.pl
Save