• Behringer, D., and X. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3. [Available online at https://ams.confex.com/ams/pdfpapers/70720.pdf.]

  • Conkright, M. E., and et al. , 1999: World ocean database 1998, documentation and quality control version 2.0. National Oceanographic Data Center Internal Rep. 14, National Oceanographic Data Center, Silver Spring, MD, 127 pp. [Available online at ftp://ftp.nodc.noaa.gov/pub/data.nodc/woa/PUBLICATIONS/NODC_Internal_Rpt_14.pdf.]

  • Fujii, Y., and et al. , 2015: Evaluation of the Tropical Pacific Observing System from the ocean data assimilation perspective. Quart. J. Roy. Meteor. Soc., 141, 24812496, doi:10.1002/qj.2579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, doi:10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M. 2010: Elements of MOM4p1. Tech. Rep. 6, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 444 pp.

  • Kanamitsu, M., W. Ebisuzaki, J. Wollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, M. Botzet, J. Jungclaus, and U. Schulzweida, 2005: A coupled method for initializing El Niño–Southern Oscillation forecasts using sea surface temperature. Tellus, 57A, 340356, doi:10.1111/j.1600-0870.2005.00107.x.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy for CGCMs. Geophys. Res. Lett., 29, 1367, doi:10.1029/2002GL014834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Z.-Z. Hu, 2014: Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Climate Dyn., 42, 12431258, doi:10.1007/s00382-013-1721-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, L. Zhang, W. Wang, Y. Xue, C. Wen, L. Marx, and B. Huang, 2012: An analysis of the nonstationarity in the bias of sea surface temperature forecasts for the NCEP Climate Forecast System (CFS) version 2. Mon. Wea. Rev., 140, 30033016, doi:10.1175/MWR-D-11-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., H. Wang, Y. Xue, and W. Wang, 2014: How much of monthly subsurface temperature variability in the equatorial Pacific can be recovered by the specification of sea surface temperatures? J. Climate, 27, 15591557, doi:10.1175/JCLI-D-13-00258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, Y. Xue, and D. Behringer, 2015: An analysis of the temporal evaluation of ENSO prediction skill in the context of the equatorial Pacific Ocean observing system. Mon. Wea. Rev., 143, 32043213, doi:10.1175/MWR-D-15-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, S. Shingu, and T. Yamagata, 2005: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18, 44744497, doi:10.1175/JCLI3526.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, doi:10.1029/2012GL051826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2014: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., 95, 243267, doi:10.1175/BAMS-D-12-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Servonnat, J., J. Mingot, E. Guilyardi, D. Swingedouw, R. Seferiona, and S. Labetoulle, 2015: Reconstructing the subsurface ocean decadal variability using surface nudging in a perfect model framework. Climate Dyn., 44, 315338, doi:10.1007/s00382-014-2184-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., A. Kumar, and W. Wang, 2013: Characteristics of oceanic response to ENSO estimated from simulations with the NCEP Climate Forecast System. J. Climate, 26, 80658083, doi:10.1175/JCLI-D-12-00795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., B. Huang, Z.-Z. Hu, A. Kumar, C. Wen, D. Behringer, and S. Nadiga, 2011: An assessment of oceanic variability in the NCEP Climate Forecast System Reanalysis. Climate Dyn., 37, 25112539, doi:10.1007/s00382-010-0954-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., and et al. , 2012: A comparative analysis of upper-ocean heat content variability from an ensemble of operational ocean reanalyses. J. Climate, 25, 69056929, doi:10.1175/JCLI-D-11-00542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., A. Kumar, and W. Wang, 2012: Influence of changes in observations on precipitation: A case study for the Climate Forecast System Reanalysis (CFSR). J. Geophys. Res., 117, D08105, doi:10.1029/2011JD017347.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, and M. A. Balmaseda, 2012: An ensemble estimation of the variability of upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis products. Climate Dyn., 39, 10011020, doi:10.1007/s00382-011-1189-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., A. Kumar, H. Wang, and B. Huang, 2015: Sea surface temperature predictions in CFSv2 using a simple ocean initialization scheme. Mon. Wea. Rev., 143, 31763191, doi:10.1175/MWR-D-14-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 3
PDF Downloads 8 8 1

Sensitivity of Subsurface Ocean Temperature Variability to Specification of Surface Observations in the Context of ENSO

View More View Less
  • 1 Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland
  • | 2 Climate Prediction Center, NOAA/NWS/NCEP, College Park, and Innovim, Greenbelt, Maryland
  • | 3 Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland
© Get Permissions
Restricted access

Abstract

To estimate the state of the ocean in the context of monitoring and prediction, ocean analysis products combine observed information from various sources that include both in situ ocean measurements and estimates of atmospheric forcings derived either from numerical models or from objective analysis methods. In the context of El Niño–Southern Oscillation (ENSO) variability in the equatorial tropical Pacific, this study discusses two questions: 1) the role of surface forcings in resolving the observed variability of subsurface ocean temperatures, and 2) which component of surface forcings plays a more important role.

The analysis approach is based on ocean model simulations where specification of surface forcings is controlled and the resulting ocean state is either compared among various simulations or is compared with an independent ocean analysis (where information from in situ ocean temperature measurements is included). The results highlight the importance of the contribution of observed sea surface temperature (via its influence on surface winds due to coupled air–sea interactions) and the observed surface wind forcing in determining the evolution of subsurface ocean temperatures. Implications for assessing the feasibility of extending ocean analysis and forecasts back in time when in situ observations were limited are also discussed.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Arun Kumar, arun.kumar@noaa.gov

Abstract

To estimate the state of the ocean in the context of monitoring and prediction, ocean analysis products combine observed information from various sources that include both in situ ocean measurements and estimates of atmospheric forcings derived either from numerical models or from objective analysis methods. In the context of El Niño–Southern Oscillation (ENSO) variability in the equatorial tropical Pacific, this study discusses two questions: 1) the role of surface forcings in resolving the observed variability of subsurface ocean temperatures, and 2) which component of surface forcings plays a more important role.

The analysis approach is based on ocean model simulations where specification of surface forcings is controlled and the resulting ocean state is either compared among various simulations or is compared with an independent ocean analysis (where information from in situ ocean temperature measurements is included). The results highlight the importance of the contribution of observed sea surface temperature (via its influence on surface winds due to coupled air–sea interactions) and the observed surface wind forcing in determining the evolution of subsurface ocean temperatures. Implications for assessing the feasibility of extending ocean analysis and forecasts back in time when in situ observations were limited are also discussed.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Arun Kumar, arun.kumar@noaa.gov
Save