• Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, doi:10.1175/JAMC-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avramov, A., and J. Harrington, 2010: Influence of parameterized ice habit on simulated mixed-phase Arctic clouds. J. Geophys. Res., 115, D24202, doi:10.1029/2009JD012108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B., 1997: Cloud microphysics and climate. Science, 276, 10721078, doi:10.1126/science.276.5315.1072.

  • Bechini, R., L. Baldini, and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, doi:10.1175/JAMC-D-12-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., J. Vivekanandan, J. D. Tuttle, and C. J. Kessinger, 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123, 31293143, doi:10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Browne, I. C., and N. P. Robinson, 1952: Cross-polarization of the radar melting band. Nature, 170, 10781079, doi:10.1038/1701078b0.

  • Chandrasekar, V., R. Keränen, S. Lim, and D. Moisseev, 2013: Recent advances in classification of observations from dual polarization weather radars. Atmos. Res., 119, 97111, doi:10.1016/j.atmosres.2011.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51, 12061221, doi:10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. F. Mass, 2000: The 5–9 February 1996 flooding event over the Pacific Northwest: Sensitivity studies and evaluation of the MM5 precipitation forecasts. Mon. Wea. Rev., 128, 593617, doi:10.1175/1520-0493(2000)128<0593:TFFEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and et al. , 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, doi:10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Fovell, R. G., and H. Su, 2007: Impact of cloud microphysics on hurricane track forecasts. Geophys. Res. Lett., 34, L24810, doi:10.1029/2007GL031723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fridlind, A., A. Ackerman, G. McFarquhar, G. Zhang, M. Poellot, P. DeMott, A. Prenni, and A. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J. Geophys. Res., 112, D24202, doi:10.1029/2007JD008646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979, doi:10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W. D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507, doi:10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J., T. Reisin, W. Cotton, and S. Kreidenweis, 1999: Cloud resolving simulations of Arctic stratus. Part II: Transition-season clouds. Atmos. Res., 51, 4575, doi:10.1016/S0169-8095(98)00098-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J., K. Sulia, and H. Morrison, 2013a: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, doi:10.1175/JAS-D-12-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J., K. Sulia, and H. Morrison, 2013b: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365376, doi:10.1175/JAS-D-12-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., G.-J. Van Zadelhoff, D. P. Donovan, F. Fabry, R. J. Hogan, and A. J. Illingworth, 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part II: Evaluation and parameterizations of ensemble ice particle sedimentation velocities. J. Atmos. Sci., 64, 10681088, doi:10.1175/JAS3900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, I. M., 1954: Polarization of radar echoes from meteorological precipitation. Nature, 173, 165166, doi:10.1038/173165b0.

  • Jackson, R. C., and et al. , 2012: The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. J. Geophys. Res., 117, D15207, doi:10.1029/2012JD017668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A., and J. Y. Harrington, 2015: Modeling ice crystal aspect ratio evolution during riming: A single particle growth model. J. Atmos. Sci., 72, 25692590, doi:10.1175/JAS-D-14-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A., H. Morrison, and J. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., doi:10.1175/JAS-D-16-0350.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., G. Zhang, and M. Xue, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245, doi:10.1175/2007MWR2083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, doi:10.1175/2010JAMC2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J. R., P. Yang, B. A. Baum, and S. L. Nasiri, 2002: Parameterization of shortwave ice cloud optical properties for various particle habits. J. Geophys. Res., 107, doi:10.1029/2001JD000742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and K. Sassen, 1998: Cirrus cloud simulation using explicit microphysics and radiation. Part I: Model description. J. Atmos. Sci., 55, 18081821, doi:10.1175/1520-0469(1998)055<1808:CCSUEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenig, L., 1971: Numerical modeling of ice deposition. J. Atmos. Sci., 28, 226237, doi:10.1175/1520-0469(1971)028<0226:NMOID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., and A. Belochitski, 2012: Parameterization of cloud microphysics based on full integral moments. J. Atmos. Sci., 69, 22292242, doi:10.1175/JAS-D-11-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Phase transformation of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 1938, doi:10.1256/qj.01.203.

  • Kubar, T. L., D. L. Hartmann, and R. Wood, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part I: Satellite observations. J. Atmos. Sci., 66, 29532972, doi:10.1175/2009JAS3071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, doi:10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm and cold season applications. J. Oper. Meteor., 1, 243264, doi:10.15191/nwajom.2013.0120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274, doi:10.15191/nwajom.2013.0121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, doi:10.1175/JAMC-D-13-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, doi:10.1175/2008MWR2332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., R. Farley, and H. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., E. E. Clothiaux, K. Aydin, G. Botta, and J. Verlinde, 2013: Modeling variability in dendritic ice crystal backscattering cross sections at millimeter wavelengths using a modified Rayleigh–Gans theory. J. Quant. Spectrosc. Radiat. Transfer, 131, 95104, doi:10.1016/j.jqsrt.2013.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and et al. , 2011: Indirect and Semi-Direct Aerosol Campaign: The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201, doi:10.1175/2010BAMS2935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M., P. DeMott, and W. Cotton, 1992: New primary ice nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721, doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and H. Morrison, 2013: Prediction of graupel density in a bulk microphysics scheme. J. Atmos. Sci., 70, 410429, doi:10.1175/JAS-D-12-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., M. K. Yau, J. Mailhot, S. Bèlair, and R. McTaggart-Cowan, 2010: Simulation of an orographic precipitation even during IMPROVE-2. Part II: Sensitivity to the number of moments in the bulk microphysics scheme. Mon. Wea. Rev., 138, 625642, doi:10.1175/2009MWR3121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 16371644, doi:10.1175/JAS3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci., 65, 792812, doi:10.1175/2007JAS2374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. Shupe, J. Pinto, and J. Curry, 2005: Possible roles of ice nucleation mode and ice nuclei depletion in the extended lifetime of Arctic mixed-phase clouds. Geophys. Res. Lett., 32, L18801, doi:10.1029/2005GL023614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, doi:10.1038/ngeo1332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., A. A. Jensen, J. Y. Harrington, and J. A. Milbrandt, 2016: Advection of coupled hydrometeor quantities in bulk cloud microphysics schemes. Mon. Wea. Rev., 144, 28092829, doi:10.1175/MWR-D-15-0368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, R. E., S. G. Geotis, M. L. Stone, and A. Fleisher, 1955: How round are raindrops? Proc. Fifth Weather Radar Conf., Asbury Park, NJ, Amer. Meteor. Soc., 261–268.

  • Ono, A., 1969: The shape and riming properties of ice crystals in natural clouds. J. Atmos. Sci., 26, 138147, doi:10.1175/1520-0469(1969)026<0138:TSARPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and H. W. Barker, 1999: Accounting of the subgrid-scale cloud variability in a multi-layer 1d solar radiative transfer algorithm. Quart. J. Roy. Meteor. Soc., 125, 301330, doi:10.1002/qj.49712555316.

    • Search Google Scholar
    • Export Citation
  • Oue, M., M. R. Kumjian, Y. Lu, Z. Jiang, E. E. Clothiaux, J. Verlinde, and K. Aydin, 2015: X-band polarimetric and Ka-band Doppler spectral radar observations of a graupel-producing Arctic mixed-phase cloud. J. Appl. Meteor. Climatol., 54, 13351351, doi:10.1175/JAMC-D-14-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovchinnikov, M., and et al. , 2014: Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: Importance of ice size distribution assumptions. J. Adv. Model. Earth Syst., 6, 223248, doi:10.1002/2013MS000282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., 1978: An approximate analytical model of the vapor deposition and aggregation of snowflakes. J. Atmos. Sci., 35, 118124, doi:10.1175/1520-0469(1978)035<0118:AAAMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. Rasmussen, and R. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, doi:10.1002/qj.49712454804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, doi:10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, doi:10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2008: Binned approach to cloud-droplet riming implemented in a bulk microphysics model. J. Appl. Meteor. Climatol., 47, 694703, doi:10.1175/2007JAMC1664.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, L., J. Harrington, D. Lamb, and K. Sulia, 2009: Influence of ice crystal aspect ratio on the evolution of ice size spectra during vapor depositional growth. J. Atmos. Sci., 66, 37323743, doi:10.1175/2009JAS3113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Solomon, A., M. Shupe, P. Persson, and H. Morrison, 2009: Investigation of microphysical parameterizations of snow and ice in Arctic clouds during M-PACE through model observation comparisons. Mon. Wea. Rev., 137, 31103128, doi:10.1175/2009MWR2688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., G. Feingold, and M. Shupe, 2015: The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus. Atmos. Chem. Phys., 15, 11 72711 761, doi:10.5194/acpd-15-11727-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., and J. Y. Harrington, 2011: Ice aspect ratio influences on mixed-phase clouds: Impacts on phase partitioning in parcel models. J. Geophys. Res., 116, D21309, doi:10.1029/2011JD016298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., and M. R. Kumjian, 2017: Simulated polarimetric fields of ice vapor growth using the adaptive habit model. Part II: A case study from the FROST experiment. Mon. Wea. Rev., 145, 23032323, doi:10.1175/MWR-D-16-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., J. Y. Harrington, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part III: Applications and studies within a two-dimensional kinematic model. J. Atmos. Sci., 70, 33023320, doi:10.1175/JAS-D-12-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., H. Morrison, and J. Harrington, 2014: Dynamical and microphysical evolution during mixed-phase cloud glaciation simulated using the bulk adaptive habit prediction model. J. Atmos. Sci., 71, 41584180, doi:10.1175/JAS-D-14-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takano, Y., and K.-N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 319, doi:10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. Field, R. Rasmussen, and W. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., and V. N. Bringi, 2005: Drop axis ratios from a 2D video disdrometer. J. Atmos. Oceanic Technol., 22, 966978, doi:10.1175/JTECH1767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., D. S. Zrnić, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R., W. Cotton, M. Meyers, and J. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 2962, doi:10.1016/0169-8095(94)00087-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, doi:10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wexler, R., 1955: An evaluation of the physical effects of the melting layer. Proc. Fifth Weather Radar Conf., Asbury Park, NJ, Amer. Meteor. Soc., 329–334.

  • Woods, C., M. Stoelinga, and J. Locatelli, 2007: The IMPROVE-1 storm of 1–2 February 2001. Part III: Sensitivity of a mesoscale model simulation to the representation of snow particle types and testing of a bulk microphysical scheme with snow habit prediction. J. Atmos. Sci., 64, 39273948, doi:10.1175/2007JAS2239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and G. Feingold, 2012: Technical note: Large-eddy simulation of cloudy boundary layer with the Advanced Research WRF Model. J. Adv. Model. Earth Syst., 4, M09003, doi:10.1029/2012MS000164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Y. Harrington, 2014: Including surface kinetic effects in simple models of ice vapor diffusion. J. Atmos. Sci., 71, 372390, doi:10.1175/JAS-D-13-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, doi:10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 114 114 10
PDF Downloads 37 37 12

Simulated Polarimetric Fields of Ice Vapor Growth Using the Adaptive Habit Model. Part I: Large-Eddy Simulations

View More View Less
  • 1 Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York
  • | 2 Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

The bulk adaptive habit model (AHM) explicitly predicts ice particle aspect ratio, improving the representation of microphysical processes and properties, including ice–liquid-phase partitioning. With the unique ability to predict ice particle shape and density, the AHM is combined with an offline forward operator to produce fields of simulated polarimetric variables. An evaluation of AHM-forward-simulated dual-polarization radar signatures in an idealized Arctic mixed-phase cloud is presented. Interpretations of those signatures are provided through microphysical model output using the large-eddy simulation mode of the Weather Research and Forecasting Model.

Vapor-grown ice properties are associated with distinct observable signatures in polarimetric radar variables, with clear sensitivities to the simulated ice particle properties, including ice number, size, and distribution shape. In contrast, the liquid droplet number has little influence on both polarimetric and microphysical variables in the case presented herein. Polarimetric quantities are sensitive to the dominating crystal habit type in a volume, with enhancements for aspect ratios much lower or higher than unity. This synthesis of a microphysical model and a polarimetric forward simulator is a first step in the evaluation of detailed AHM microphysics.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0061.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kara J. Sulia, ksulia@albany.edu

Abstract

The bulk adaptive habit model (AHM) explicitly predicts ice particle aspect ratio, improving the representation of microphysical processes and properties, including ice–liquid-phase partitioning. With the unique ability to predict ice particle shape and density, the AHM is combined with an offline forward operator to produce fields of simulated polarimetric variables. An evaluation of AHM-forward-simulated dual-polarization radar signatures in an idealized Arctic mixed-phase cloud is presented. Interpretations of those signatures are provided through microphysical model output using the large-eddy simulation mode of the Weather Research and Forecasting Model.

Vapor-grown ice properties are associated with distinct observable signatures in polarimetric radar variables, with clear sensitivities to the simulated ice particle properties, including ice number, size, and distribution shape. In contrast, the liquid droplet number has little influence on both polarimetric and microphysical variables in the case presented herein. Polarimetric quantities are sensitive to the dominating crystal habit type in a volume, with enhancements for aspect ratios much lower or higher than unity. This synthesis of a microphysical model and a polarimetric forward simulator is a first step in the evaluation of detailed AHM microphysics.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0061.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kara J. Sulia, ksulia@albany.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.10 MB)
Save