• Alfaro, D. A., and M. Khairoutdinov, 2015: Thermodynamic constraints on the morphology of simulated midlatitude squall lines. J. Atmos. Sci., 72, 31163137, doi:10.1175/JAS-D-14-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., T. L. Mote, G. Dixon, S. L. Trotter, E. J. Powell, J. D. Durkee, and A. J. Grundstein, 2003: Distribution of mesoscale convective complex rainfall in the United States. Mon. Wea. Rev., 131, 30033017, doi:10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and et al. , 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, doi:10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, P., C. Moseley, and J. O. Haerter, 2013: Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci., 6, 181185, doi:10.1038/ngeo1731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bierkens, M. F. P., and et al. , 2015: Hyper-resolution global hydrological modelling: What is next? Hydrol. Processes, 29, 310320, doi:10.1002/hyp.10391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., 2012: Verification of RUC 0–1-h forecasts and SPC mesoscale analyses using VORTEX2 soundings. Wea. Forecasting, 27, 667683, doi:10.1175/WAF-D-11-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Y. Hwang, and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses. Mon. Wea. Rev., 138, 35143539, doi:10.1175/2010MWR3233.1; Corrigendum, 139, 26862688, doi:10.1175/MWR-D-11-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Correia Jr., P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, doi:10.1175/WAF-D-12-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955965, doi:10.1175/BAMS-85-7-955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Appl. Meteor., 25, 13331345, doi:10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and et al. , 2017: The 2015 Plains Elevated Convection At Night field project. Bull. Amer. Meteor. Soc., 98, 767786, doi:10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., R. W. Knight, and T. R. Karl, 2012: Changes in intense precipitation over the central United States. J. Hydrometeor., 13, 4766, doi:10.1175/JHM-D-11-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161, doi:10.1175/2009MWR3018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, R. P., P. M. Markowski, and J. M. Fritsch, 2006: Bow echo sensitivity to ambient moisture and cold pool strength. Mon. Wea. Rev., 134, 950964, doi:10.1175/MWR3109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keene, K. M., and R. S. Schumacher, 2013: The bow and arrow mesoscale convective structure. Mon. Wea. Rev., 141, 16481672, doi:10.1175/MWR-D-12-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2013: The south-central U.S. flood of May 2010: Present and future. J. Climate, 26, 46884709, doi:10.1175/JCLI-D-12-00392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, doi:10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Market, P., S. Allen, R. Scofield, R. Kuligowski, and A. Gruber, 2003: Precipitation efficiency of warm-season midwestern mesoscale convective systems. Wea. Forecasting, 18, 12731285, doi:10.1175/1520-0434(2003)018<1273:PEOWMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., C. Cohen, and C. Kirkpatrick, 2005: The sensitivity of simulated storm structure, intensity, and precipitation efficiency to environmental temperature. Mon. Wea. Rev., 133, 30153037, doi:10.1175/MWR3015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 33503371, doi:10.1175/JAS-D-11-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naylor, J., and M. S. Gilmore, 2012: Convective initiation in an idealized cloud model using an updraft nudging technique. Mon. Wea. Rev., 140, 36993705, doi:10.1175/MWR-D-12-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2004: Simulated convective lines with leading precipitation. Part II: Evolution and maintenance. J. Atmos. Sci., 61, 16561673, doi:10.1175/1520-0469(2004)061<1656:SCLWLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and P. J. Roebber, 2014: Synoptic control of heavy-rain-producing convective training episodes. Mon. Wea. Rev., 142, 24642482, doi:10.1175/MWR-D-13-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2014: Objective categorization of heavy-rain-producing MCS synoptic types by rotated principal component analysis. Mon. Wea. Rev., 142, 17161737, doi:10.1175/MWR-D-13-00295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2015: The simulated structure and evolution of a quasi-idealized warm season convective system with a training convective line. J. Atmos. Sci., 72, 19872010, doi:10.1175/JAS-D-14-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2016: Dynamics governing a simulated mesoscale convective system with a training convective line. J. Atmos. Sci., 73, 26432664, doi:10.1175/JAS-D-15-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., E. R. Nielsen, M. D. Parker, S. M. Hitchcock, and R. S. Schumacher, 2017: The impact of low-level moisture errors on model forecasts of an MCS observed during PECAN. Mon. Wea. Rev., doi:10.1175/MWR-D-16-0296.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2015: Sensitivity of precipitation accumulation in elevated convective systems to small changes in low-level moisture. J. Atmos. Sci., 72, 25072524, doi:10.1175/JAS-D-14-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., T. J. Galarneau Jr., and L. F. Bosart, 2011: Distant effects of a recurving tropical cyclone on rainfall in a midlatitude convective system: A high-impact predecessor rain event. Mon. Wea. Rev., 139, 650667, doi:10.1175/2010MWR3453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stevenson, S. N., and R. S. Schumacher, 2014: A 10-year survey of extreme rainfall events in the central and eastern United States using gridded multisensor precipitation analyses. Mon. Wea. Rev., 142, 31473162, doi:10.1175/MWR-D-13-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukovich, E. M., F. M. Ralph, F. E. Barthold, D. W. Reynolds, and D. R. Novak, 2014: Extreme quantitative precipitation forecast performance at the Weather Prediction Center from 2001 to 2011. Wea. Forecasting, 29, 894911, doi:10.1175/WAF-D-13-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2006: Impacts of moisture profile on the evolution and organization of midlatitude squall lines under various shear conditions. Atmos. Res., 82, 3754, doi:10.1016/j.atmosres.2005.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2010: Dependence of the precipitation intensity in mesoscale convective systems to temperature lapse rate. Atmos. Res., 96, 273285, doi:10.1016/j.atmosres.2009.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., D. J. Stensrud, S. L. Mullen, and L. J. Wicker, 2008: On the predictability of mesoscale convective systems: Two-dimensional simulations. Wea. Forecasting, 23, 773785, doi:10.1175/2008WAF2007057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., D. J. Stensrud, S. L. Mullen, and L. J. Wicker, 2010: On the predictability of mesoscale convective systems: Three-dimensional simulations. Mon. Wea. Rev., 138, 863885, doi:10.1175/2009MWR2961.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 69 69 4
PDF Downloads 49 49 7

Near-Surface Thermodynamic Sensitivities in Simulated Extreme-Rain-Producing Mesoscale Convective Systems

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

This study investigates the influences of low-level atmospheric water vapor on the precipitation produced by simulated warm-season midlatitude mesoscale convective systems (MCSs). In a series of semi-idealized numerical model experiments using initial conditions gleaned from composite environments from observed cases, small increases in moisture were applied to the model initial conditions over a layer either 600 m or 1 km deep. The precipitation produced by the MCS increased with larger moisture perturbations as expected, but the rainfall changes were disproportionate to the magnitude of the moisture perturbations. The experiment with the largest perturbation had a water vapor mixing ratio increase of approximately 2 g kg−1 over the lowest 1 km, corresponding to a 3.4% increase in vertically integrated water vapor, and the area-integrated MCS precipitation in this experiment increased by nearly 60% over the control. The locations of the heaviest rainfall also changed in response to differences in the strength and depth of the convectively generated cold pool. The MCSs in environments with larger initial moisture perturbations developed stronger cold pools, and the convection remained close to the outflow boundary, whereas the convective line was displaced farther behind the outflow boundary in the control and the simulations with smaller moisture perturbations. The high sensitivity of both the amount and location of MCS rainfall to small changes in low-level moisture demonstrates how small moisture errors in numerical weather prediction models may lead to large errors in their forecasts of MCS placement and behavior.

Current affiliation: Naval Postgraduate School, Monterey, California.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Prof. Russ Schumacher, russ.schumacher@colostate.edu

Abstract

This study investigates the influences of low-level atmospheric water vapor on the precipitation produced by simulated warm-season midlatitude mesoscale convective systems (MCSs). In a series of semi-idealized numerical model experiments using initial conditions gleaned from composite environments from observed cases, small increases in moisture were applied to the model initial conditions over a layer either 600 m or 1 km deep. The precipitation produced by the MCS increased with larger moisture perturbations as expected, but the rainfall changes were disproportionate to the magnitude of the moisture perturbations. The experiment with the largest perturbation had a water vapor mixing ratio increase of approximately 2 g kg−1 over the lowest 1 km, corresponding to a 3.4% increase in vertically integrated water vapor, and the area-integrated MCS precipitation in this experiment increased by nearly 60% over the control. The locations of the heaviest rainfall also changed in response to differences in the strength and depth of the convectively generated cold pool. The MCSs in environments with larger initial moisture perturbations developed stronger cold pools, and the convection remained close to the outflow boundary, whereas the convective line was displaced farther behind the outflow boundary in the control and the simulations with smaller moisture perturbations. The high sensitivity of both the amount and location of MCS rainfall to small changes in low-level moisture demonstrates how small moisture errors in numerical weather prediction models may lead to large errors in their forecasts of MCS placement and behavior.

Current affiliation: Naval Postgraduate School, Monterey, California.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Prof. Russ Schumacher, russ.schumacher@colostate.edu
Save