• Adlerman, E. J., and K. K. Droegemeier, 2002: The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters. Mon. Wea. Rev., 130, 26712691, doi:10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., M. Steinheimer, P. Bechtold, and J. F. Geleyn, 2013: A stochastic parametrization for deep convection using cellular automata. Quart. J. Roy. Meteor. Soc., 139, 15331543, doi:10.1002/qj.2108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., G. Shutts, M. Leutbecher, and T. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF Ensemble Prediction System. J. Atmos. Sci., 66, 603626, doi:10.1175/2008JAS2677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., S. Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 19721995, doi:10.1175/2010MWR3595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., K. Fossell, S.-Y. Ha, J. Hacker, and C. Snyder, 2015: Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations. Mon. Wea. Rev., 143, 12951320, doi:10.1175/MWR-D-14-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., B. Vié, O. Nuissier, and L. Raynaud, 2012: Impact of stochastic physics in a convection-permitting ensemble. Mon. Wea. Rev., 140, 37063721, doi:10.1175/MWR-D-12-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The local ETKF and SKEB: Upgrades to the MOGREPS short‐range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 767776, doi:10.1002/qj.394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2005: Spurious convective organization in simulated squall lines owing to moist absolutely unstable layers. Mon. Wea. Rev., 133, 19781997, doi:10.1175/MWR2952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908, doi:10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., and Y. Cheng, 1997: Determination of the Smagorinsky–Lilly constant CS. Phys. Fluids, 9, 13681378, doi:10.1063/1.869251.

  • Christensen, H., I. Moroz, and T. Palmer, 2015: Stochastic and perturbed parameter representations of model uncertainty in convection parameterization. J. Atmos. Sci., 72, 25252544, doi:10.1175/JAS-D-14-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., and T. C. Chen, 2008: Contributions of mixed physics versus perturbed initial/lateral boundary conditions to ensemble-based precipitation forecast skill. Mon. Wea. Rev., 136, 21402156, doi:10.1175/2007MWR2029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., M. Xue, and F. Kong, 2010: Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather environment. Wea. Forecasting, 25, 10521081, doi:10.1175/2010WAF2222390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, doi:10.1175/2009MWR2956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckel, F. A., and C. F. Mass, 2005: Aspects of effective mesoscale, short-range ensemble forecasting. Wea. Forecasting, 20, 328350, doi:10.1175/WAF843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiori, E., A. Parodi, and F. Siccardi, 2009: Dealing with uncertainty: Turbulent parameterizations and grid-spacing effects in numerical modelling of deep moist convective processes. Nat. Hazards Earth Syst. Sci., 9, 18711880, doi:10.5194/nhess-9-1871-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, V., M. Abaza, F. Anctil, and R. Turcotte, 2014: Why should ensemble spread match the RMSE of the ensemble mean? J. Hydrometeor., 15, 17081713, doi:10.1175/JHM-D-14-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469, doi:10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., C. Snyder, S.-Y. Ha, and M. Pocernich, 2011a: Linear and non‐linear response to parameter variations in a mesoscale model. Tellus, 63A, 429444, doi:10.1111/j.1600-0870.2010.00505.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and et al. , 2011b: The U.S. Air Force Weather Agency’s mesoscale ensemble: Scientific description and performance results. Tellus, 63A, 625641, doi:10.1111/j.1600-0870.2010.00497.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and et al. , 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., G. H. Bryan, and J. P. Hacker, 2007: Explicit numerical diffusion in the WRF model. Mon. Wea. Rev., 135, 38083824, doi:10.1175/2007MWR2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koo, M. S., and S. Y. Hong, 2014: Stochastic representation of dynamic model tendency: Formulation and preliminary results. Asia-Pac. J. Atmos. Sci., 50, 497506, doi:10.1007/s13143-014-0039-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., A. Crook, J. C. Knievel, and J. Dudhia, 2005: Sensitivity of the WRF model to advection and diffusion schemes for simulation of heavy rainfall along the baiu front. SOLA, 1, 177180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langhans, W., J. Schmidli, and C. Schär, 2012: Mesoscale impacts of explicit numerical diffusion in a convection-permitting model. Mon. Wea. Rev., 140, 226244, doi:10.1175/2011MWR3650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J. W. B., and J. D. Neelin, 2000: Influence of a stochastic moist convective parameterization on tropical climate variability. Geophys. Res. Lett., 27, 36913694, doi:10.1029/2000GL011964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J. W. B., and J. D. Neelin, 2003: Toward stochastic deep convective parameterization in general circulation models. Geophys. Res. Lett., 30, 1162, doi:10.1029/2002GL016203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and B. Khouider, 2002: Stochastic and mesoscopic models for tropical convection. Proc. Natl. Acad. Sci. USA, 99, 11231128, doi:10.1073/pnas.032663199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., and N. Roberts, 2010: Intercomparison of spatial forecast verification methods: Identifying skillful spatial scales using the fractions skill score. Wea. Forecasting, 25, 343354, doi:10.1175/2009WAF2222260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 42 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2009/11577-stochastic-parametrization-and-model-uncertainty.pdf.]

  • Plant, R. S., and G. C. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87105, doi:10.1175/2007JAS2263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and M. L. Flora, 2015: Sensitivity of idealized supercell simulations to horizontal grid spacing: Implications for Warn-on-Forecast. Mon. Wea. Rev., 143, 29983024, doi:10.1175/MWR-D-14-00416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder, J. L. Anderson, and M. L. Weisman, 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 45194541, doi:10.1175/MWR-D-14-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, A. Shapiro, K. Brewster, and J. Gao, 2011: The analysis and prediction of the 8–9 May 2007 Oklahoma tornadic mesoscale convective system by assimilating WSR-88D and CASA radar data using 3DVAR. Mon. Wea. Rev., 139, 224246, doi:10.1175/2010MWR3336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and A. Shapiro, 2012: Tornadogenesis in a simulated mesovortex within a mesoscale convective system. J. Atmos. Sci., 69, 33723390, doi:10.1175/JAS-D-12-038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102, doi:10.1256/qj.04.106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Snook, N., and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms. Geophys. Res. Lett., 35, 851854, doi:10.1029/2008GL035866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and Y. Jung, 2011: Analysis of a tornadic mesoscale convective vortex based on ensemble Kalman filter assimilation of CASA X-band and WSR-88D radar data. Mon. Wea. Rev., 139, 34463468, doi:10.1175/MWR-D-10-05053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and Y. Jung, 2015: Multiscale EnKF assimilation of radar and conventional observations and ensemble forecasting for a tornadic mesoscale convective system. Mon. Wea. Rev., 143, 10351057, doi:10.1175/MWR-D-13-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J. W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107, doi:10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemi, T., and R. Rotunno, 2003: The effects of subgrid model mixing and numerical filtering in simulations of mesoscale cloud systems. Mon. Wea. Rev., 131, 20852101, doi:10.1175/1520-0493(2003)131<2085:TEOSMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., L. J. Wicker, D. C. Dowell, H. B. Bluestein, D. T. Dawson II, and M. Xue, 2013: EnKF assimilation of high-resolution, mobile Doppler radar data of the 4 May 2007 Greensburg, Kansas, supercell into a numerical cloud model. Mon. Wea. Rev., 141, 625648, doi:10.1175/MWR-D-12-00099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennant, W. J., G. J. Shutts, A. Arribas, and S. A. Thompson, 2011: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Wea. Rev., 139, 11901206, doi:10.1175/2010MWR3430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807, doi:10.1175/MWR2898.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., N. P. M. Van Lipzig, and L. Delobbe, 2011: The impact of size distribution assumptions in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics during a low-topped supercell case in Belgium. Mon. Wea. Rev., 139, 11311147, doi:10.1175/2010MWR3481.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verrelle, A., D. Ricard, and C. Lac, 2015: Sensitivity of high-resolution idealized simulations of thunderstorms to horizontal resolution and turbulence parameterization. Quart. J. Roy. Meteor. Soc., 141, 433448, doi:10.1002/qj.2363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and et al. , 2011: The Central European limited‐area ensemble forecasting system: ALADIN‐LAEF. Quart. J. Roy. Meteor. Soc., 137, 483502, doi:10.1002/qj.751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and A. F. Loughe, 1998: The relationship between ensemble spread and ensemble mean skill. Mon. Wea. Rev., 126, 32923302, doi:10.1175/1520-0493(1998)126<3292:TRBESA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., 2000: High-order monotonic numerical diffusion and smoothing. Mon. Wea. Rev., 128, 28532864, doi:10.1175/1520-0493(2000)128<2853:HOMNDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, doi:10.1007/s007030070003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and et al. , 2001: The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143165, doi:10.1007/s007030170027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and et al. , 2009: CAPS realtime 4-km multi-model convection-allowing ensemble and 1-km convection-resolving forecasts for the NOAA Hazardous Weather Testbed 2009 Spring Experiment. 23rd Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 16A.2. [Available online at https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154323.htm.]

  • Xue, M., M. Hu, and A. D. Schenkman, 2014: Numerical prediction of the 8 May 2003 Oklahoma City tornadic supercell and embedded tornado using ARPS with the assimilation of WSR-88D data. Wea. Forecasting, 29, 3962, doi:10.1175/WAF-D-13-00029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 65 65 11
PDF Downloads 52 52 7

A Stochastic Perturbed Parameterization Tendency Scheme for Diffusion (SPPTD) and Its Application to an Idealized Supercell Simulation

View More View Less
  • 1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, and Shenyang Central Meteorological Observatory, Shenyang, China
  • | 2 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

Diffusion plays an important role in supercell simulations. A stochastically perturbed parameterization tendency scheme for diffusion (SPPTD) is developed to incorporate diffusive uncertainties in ensemble forecasts. This scheme follows the same procedure as the previously published stochastically perturbed parameterization tendencies (SPPT) scheme but uses a recursive filter to generate smooth perturbations. It also employs horizontal and vertical localization to retain the impact of perturbation in areas with strong shear. Three additional restrictions are added for the sake of integration stability; these restrictions determine the area and amplitude of the perturbation and the situation to suspend SPPTD.

The performance of this scheme is examined by using an idealized supercell storm. The model errors are simulated using different resolutions in the truth run (1 km) and ensemble forecasts (2 km). The results indicate that the ensemble forecasts using SPPTD encompass the intensity and displacement of maximum updraft helicity in the truth run. This scheme yields better results than can be obtained using initial perturbations or larger computational mixing coefficients.

The sensitivity of SPPTD to each of its parameters is also examined. The results indicate that the optimal horizontal and temporal scales for SPPTD are 40 km and 30 min, respectively. Moderately adjusting the spatiotemporal scale by 10 km or 10 min does not significantly change the SPPTD performance. In this case study, an ensemble size of 20 is sufficient. Perturbing the diffusion terms of all variables using the same approach does not provide additional benefits other than that of selected variables and thus requires further study.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Shizhang Wang, szwang@nuist.edu.cn

Abstract

Diffusion plays an important role in supercell simulations. A stochastically perturbed parameterization tendency scheme for diffusion (SPPTD) is developed to incorporate diffusive uncertainties in ensemble forecasts. This scheme follows the same procedure as the previously published stochastically perturbed parameterization tendencies (SPPT) scheme but uses a recursive filter to generate smooth perturbations. It also employs horizontal and vertical localization to retain the impact of perturbation in areas with strong shear. Three additional restrictions are added for the sake of integration stability; these restrictions determine the area and amplitude of the perturbation and the situation to suspend SPPTD.

The performance of this scheme is examined by using an idealized supercell storm. The model errors are simulated using different resolutions in the truth run (1 km) and ensemble forecasts (2 km). The results indicate that the ensemble forecasts using SPPTD encompass the intensity and displacement of maximum updraft helicity in the truth run. This scheme yields better results than can be obtained using initial perturbations or larger computational mixing coefficients.

The sensitivity of SPPTD to each of its parameters is also examined. The results indicate that the optimal horizontal and temporal scales for SPPTD are 40 km and 30 min, respectively. Moderately adjusting the spatiotemporal scale by 10 km or 10 min does not significantly change the SPPTD performance. In this case study, an ensemble size of 20 is sufficient. Perturbing the diffusion terms of all variables using the same approach does not provide additional benefits other than that of selected variables and thus requires further study.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Shizhang Wang, szwang@nuist.edu.cn
Save