• Asai, T., 1988: Mesoscale features of heavy snowfalls in Japan Sea coastal regions of Japan (in Japanese). Tenki, 35, 156161.

  • Bond, N. A., and M. A. Shapiro, 1991: Polar lows over the Gulf of Alaska in conditions of reverse shear. Mon. Wea. Rev., 119, 551572, doi:10.1175/1520-0493(1991)119<0551:PLOTGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and S. L. Gray, 2008: An objective climatology of the dynamical forcing of polar lows in the Nordic seas. Int. J. Climatol., 28, 19031919, doi:10.1002/joc.1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bresch, J. F., R. J. Reed, and M. D. Albright, 1997: A polar-low development over the Bering Sea: Analysis, numerical simulation, and sensitivity experiments. Mon. Wea. Rev., 125, 31093130, doi:10.1175/1520-0493(1997)125<3109:APLDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., and D. A. Carpenter, 1990: Satellite climatology of polar lows and broadscale climatic associations for the southern hemisphere. Int. J. Climatol., 10, 219246, doi:10.1002/joc.3370100302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and R. Rotunno, 1989: Polar lows as arctic hurricanes. Tellus, 41A, 117, doi:10.1111/j.1600-0870.1989.tb00362.x.

  • Emanuel, K., M. Fantini, and A. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, doi:10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B., 1984: Modal and non-modal baroclinic waves. J. Atmos. Sci., 41, 668673, doi:10.1175/1520-0469(1984)041<0668:MANMBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, G., H. Niino, R. Kimura, and T. Kato, 2004: A polar low over the Japan Sea on 21 January 1997. Part I: Observational analysis. Mon. Wea. Rev., 132, 15371551, doi:10.1175/1520-0493(2004)132<1537:APLOTJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harold, J., G. Bigg, and J. Turner, 1999: Mesocyclone activity over the North-East Atlantic. Part 1: Vortex distribution and variability. Int. J. Climatol., 19, 11871204, doi:10.1002/(SICI)1097-0088(199909)19:11<1187::AID-JOC419>3.0.CO;2-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikawa, M., H. Mizuno, T. Matsuo, M. Murakami, Y. Yamada, and K. Saito, 1991: Numerical modeling of the convective snow cloud over the Sea of Japan. Precipitation mechanism and sensitivity to ice crystal nucleation rates. J. Meteor. Soc. Japan, 69, 641667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Japan Meteorological Agency, 2013: Outline of the operational numerical weather prediction at the Japan Meteorological Agency (March 2013). Appendix to WMO technical progress report on the global data-processing and forecasting system and numerical weather prediction, Japan Meteorological Agency, 188 pp. [Available online at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2013-nwp/index.htm.]

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., 2006: A new climatology of favourable conditions for reverse‐shear polar lows. Tellus, 58A, 344354, doi:10.1111/j.1600-0870.2006.00171.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., 2011: A global climatology of favourable conditions for polar lows. Quart. J. Roy. Meteor. Soc., 137, 17491761, doi:10.1002/qj.888.

  • Mallet, P.-E., C. Claud, C. Cassou, G. Noer, and K. Kodera, 2013: Polar lows over the Nordic and Labrador Seas: Synoptic circulation patterns and associations with North Atlantic–Europe wintertime weather regimes. J. Geophys. Res. Atmos., 118, 24552372, doi:10.1002/jgrd.50246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and B. T. Farrell, 1992: Polar low dynamics. J. Atmos. Sci., 49, 24842505, doi:10.1175/1520-0469(1992)049<2484:PLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and P. W. Vachon, 2002: A polar low over the Labrador Sea: Interactions with topography and an upper-level potential vorticity anomaly, and an observation by RADARSAT-1 SAR. Geophys. Res. Lett., 29, doi:10.1029/2001GL014007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 1989: Polar comma-cloud lows over the Japan Sea and the Northwestern Pacific in winter. J. Meteor. Soc. Japan, 67, 8397.

  • Ninomiya, K., 1994: A meso-scale low family formed over the northeastern Japan Sea in the northwestern part of a parent Polar low. J. Meteor. Soc. Japan, 72, 589603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohtake, H., M. Kawashima, and Y. Fujiyoshi, 2009: The formation mechanism of a thick cloud band over the northern part of the Sea of Japan during cold air outbreaks. J. Meteor. Soc. Japan, 87, 289306, doi:10.2151/jmsj.87.289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., 1979: The polar low as an extratropical CISK disturbance. Quart. J. Roy. Meteor. Soc., 105, 531549, doi:10.1002/qj.49710544504.

  • Rasmussen, E., and J. Turner, 2003: Polar Lows. Cambridge University Press, 612 pp.

    • Crossref
    • Export Citation
  • Reed, R. J., and C. N. Duncan, 1987: Baroclinic instability as a mechanism for the serial development of polar lows. Tellus, 39A, 376384, doi:10.1111/j.1600-0870.1987.tb00314.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R., T. Smith, C. Liu, D. Chelton, K. Casey, and M. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rojo, M., C. Claud, P. Mallet, G. Noer, A. Carleton, and M. Vicomte, 2015: Polar low tracks over the Nordic Seas: A 14-winter climatic analysis. Tellus, 67A, 24660, doi:10.3402/tellusa.v67.24660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., and et al. , 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, doi:10.1175/MWR3120.1.

  • Shimada, U., A. Wada, K. Yamazaki, and N. Kitabatake, 2014: Roles of an upper-level cold vortex and low-level baroclinicity in the development of polar lows over the Sea of Japan. Tellus, 66A, 24694, doi:10.3402/tellusa.v66.24694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terpstra, A., T. Spengler, and R. W. Moore, 2015: Idealised simulations of polar low development in an Arctic moist-baroclinic environment. Quart. J. Roy. Meteor. Soc., 141, 19871996, doi:10.1002/qj.2507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terpstra, A., C. Michel, and T. Spengler, 2016: Forward and reverse shear environments during polar low genesis over the Northeast Atlantic. Mon. Wea. Rev., 144, 13411354, doi:10.1175/MWR-D-15-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuboki, K., and G. Wakahama, 1992: Mesoscale cyclogenesis in winter monsoon air streams—Quasi-geostrophic baroclinic instability as a mechanism of the cyclogenesis off the west coast of Hokkaido Island, Japan. J. Meteor. Soc. Japan, 70, 7793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S. I., H. Niino, and W. Yanase, 2016: Climatology of polar mesocyclones over the Sea of Japan using a new objective tracking method. Mon. Wea. Rev., 144, 25032515, doi:10.1175/MWR-D-15-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and G. W. Petty, 2010: Intercomparison of bulk microphysics schemes in model simulations of polar lows. Mon. Wea. Rev., 138, 22112228, doi:10.1175/2010MWR3122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., J. Martin, and G. Petty, 2011: Piecewise potential vorticity diagnosis of the development of a polar low over the Sea of Japan. Tellus, 63A, 198211, doi:10.1111/j.1600-0870.2011.00511.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, W., and H. Niino, 2007: Dependence of polar low development on baroclinicity and physical processes: An idealized high-resolution numerical experiment. J. Atmos. Sci., 64, 30443067, doi:10.1175/JAS4001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, W., G. Fu, H. Niino, and T. Kato, 2004: A polar low over the Japan Sea on 21 January 1997. Part II: A numerical study. Mon. Wea. Rev., 132, 15521574, doi:10.1175/1520-0493(2004)132<1552:APLOTJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, W., H. Niino, S. I. Watanabe, K. Hodges, M. Zahn, T. Spengler, and I. A. Gurvich, 2016: Climatology of polar lows over the Sea of Japan using the JRA-55 reanalysis. J. Climate, 29, 419437, doi:10.1175/JCLI-D-15-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yarnal, B., and K. G. Henderson, 1989: A climatology of polar low cyclogenetic regions over the North Pacific Ocean. J. Climate, 2, 14761491, doi:10.1175/1520-0442(1989)002<1476:ACOPLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 63 63 3
PDF Downloads 71 71 1

Structure and Environment of Polar Mesocyclones over the Northeastern Part of the Sea of Japan

View More View Less
  • 1 Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba, Japan
© Get Permissions
Restricted access

Abstract

Polar mesocyclones (PMCs) are mesoscale cyclonic vortices that develop poleward of the main polar front. The Sea of Japan is one region where PMCs frequently occur during winter. In this paper, the general characteristics of the structure and environment of PMCs that form over the northeastern part of the Sea of Japan and move southward are examined using composite analysis and numerical simulation. The composite analyses show that the synoptic-scale environment of the PMCs is characterized by a zonal temperature gradient at lower levels and a trough accompanied by cold air at upper levels. These elements of the environmental field form a reverse shear. The mesoscale structure of the PMCs exhibits characteristics of baroclinic development, while it is also accompanied by condensational heating. The numerical simulation in which the composite fields are used for the initial and boundary conditions successfully reproduces a realistic PMC. In this numerical simulation, the mesoscale structures are almost smoothed out in the initial and boundary fields, indicating that the PMCs spontaneously form and develop when the large-scale environment becomes favorable. Sensitivity experiments in which moisture is removed demonstrate that condensational heating is crucial for the genesis and development of the PMC. The sensitivity experiments also show that the warm sea surface temperature in the Strait of Tartary and the Sea of Japan to the west of Hokkaido Island, and the topography of the Sikhote-Alin mountain region provide favorable conditions for the development of the PMCs.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shun-ichi Watanabe, watanabe-s@aori.u-tokyo.ac.jp

Abstract

Polar mesocyclones (PMCs) are mesoscale cyclonic vortices that develop poleward of the main polar front. The Sea of Japan is one region where PMCs frequently occur during winter. In this paper, the general characteristics of the structure and environment of PMCs that form over the northeastern part of the Sea of Japan and move southward are examined using composite analysis and numerical simulation. The composite analyses show that the synoptic-scale environment of the PMCs is characterized by a zonal temperature gradient at lower levels and a trough accompanied by cold air at upper levels. These elements of the environmental field form a reverse shear. The mesoscale structure of the PMCs exhibits characteristics of baroclinic development, while it is also accompanied by condensational heating. The numerical simulation in which the composite fields are used for the initial and boundary conditions successfully reproduces a realistic PMC. In this numerical simulation, the mesoscale structures are almost smoothed out in the initial and boundary fields, indicating that the PMCs spontaneously form and develop when the large-scale environment becomes favorable. Sensitivity experiments in which moisture is removed demonstrate that condensational heating is crucial for the genesis and development of the PMC. The sensitivity experiments also show that the warm sea surface temperature in the Strait of Tartary and the Sea of Japan to the west of Hokkaido Island, and the topography of the Sikhote-Alin mountain region provide favorable conditions for the development of the PMCs.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shun-ichi Watanabe, watanabe-s@aori.u-tokyo.ac.jp
Save