• Aberson, S. D., J. P. Dunion, and F. D. Marks, 2006a: A photograph of a wavenumber-2 asymmetry in the eye of Hurricane Erin. J. Atmos. Sci., 63, 387391, doi:10.1175/JAS3593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., M. Black, M. T. Montgomery, and M. Bell, 2006b: Hurricane Isabel (2003): New insights into the physics of intense storms. Part II: Extreme localized wind. Bull. Amer. Meteor. Soc., 87, 13491354, doi:10.1175/BAMS-87-10-1349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashcroft, P., and F. J. Wentz, 2000: AMSR algorithm theoretical basis document. RSS Tech. Rep. 121599B-1, 27 pp.

  • Barnes, G. M., and P. Fuentes, 2010: Eye excess energy and the rapid intensification of Hurricane Lili (2002). Mon. Wea. Rev., 138, 14461458, doi:10.1175/2009MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 15731592, doi:10.1175/1520-0493(2002)130<1573:ACRSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., R. D. Knabb, M. Mainelli, and T. B. Kimberlain, 2009: Atlantic hurricane season of 2007. Mon. Wea. Rev., 137, 40614088, doi:10.1175/2009MWR2995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005a: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part I: General statistics. Mon. Wea. Rev., 133, 188208, doi:10.1175/MWR-2848.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005b: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 209227, doi:10.1175/MWR-2849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. F., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41, 12681286, doi:10.1175/1520-0469(1984)041<1268:MACSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., and R. B. Wilhelmson, 1997: The numerical simulation of nonsupercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary. J. Atmos. Sci., 54, 3260, doi:10.1175/1520-0469(1997)054<0032:TNSONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., P. G. Black, M. T. Montgomery, and R. W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 12371259, doi:10.1175/2007MWR2073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., M. T. Montgomery, and L. D. Grasso, 2001: The wavenumber-one instability and trochoidal motion of hurricane-like vortices. J. Atmos. Sci., 58, 32433270, doi:10.1175/1520-0469(2001)058<3243:TWOIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371, doi:10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., and et al. , 2017: Rewriting the tropical record books: The extraordinary intensification of Hurricane Patricia (2015). Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-16-0039.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and H. Zhu, 2005: Buoyancy in tropical cyclones and other rapidly rotating atmospheric vortices. Dyn. Atmos. Oceans, 40, 189208, doi:10.1016/j.dynatmoce.2005.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., G. H. Bryan, and S. D. Aberson, 2016: Extreme updrafts and wind speeds measured by dropsondes in tropical cyclones. Mon. Wea. Rev., 144, 21772204, doi:10.1175/MWR-D-15-0313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305, doi:10.1175/1520-0493(1982)110<1298:ODOHTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 9
PDF Downloads 23 23 3

An Extreme Event in the Eyewall of Hurricane Felix on 2 September 2007

View More View Less
  • 1 NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida
  • | 2 University of Miami/Cooperative Institute for Marine and Atmospheric Studies, and NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida
  • | 3 University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
© Get Permissions
Restricted access

Abstract

During a routine penetration into Hurricane Felix late on 2 September 2007, NOAA42 encountered extreme turbulence and graupel, flight-level horizontal wind gusts of over 83 m s−1, and vertical wind speeds varying from 10 m s−1 downward to 31 m s−1 upward and back to nearly 7 m s−1 downward within 1 min. This led the plane to rise nearly 300 m and then return to its original level within that time. Though a dropwindsonde was released during this event, the radars and data systems on board the aircraft were rendered inoperable, limiting the amount of data obtained.

The feature observed during the flight is shown to be similar to that encountered during flights into Hurricanes Hugo (1989) and Patricia (2015), and by a dropwindsonde released into a misovortex in Hurricane Isabel (2003). This paper describes a unique dataset of a small-scale feature that appears to be prevalent in very intense tropical cyclones, providing new evidence for eye–eyewall mixing processes that may be related to intensity change.

Current affiliation: Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Sim D. Aberson, sim.aberson@noaa.gov

Abstract

During a routine penetration into Hurricane Felix late on 2 September 2007, NOAA42 encountered extreme turbulence and graupel, flight-level horizontal wind gusts of over 83 m s−1, and vertical wind speeds varying from 10 m s−1 downward to 31 m s−1 upward and back to nearly 7 m s−1 downward within 1 min. This led the plane to rise nearly 300 m and then return to its original level within that time. Though a dropwindsonde was released during this event, the radars and data systems on board the aircraft were rendered inoperable, limiting the amount of data obtained.

The feature observed during the flight is shown to be similar to that encountered during flights into Hurricanes Hugo (1989) and Patricia (2015), and by a dropwindsonde released into a misovortex in Hurricane Isabel (2003). This paper describes a unique dataset of a small-scale feature that appears to be prevalent in very intense tropical cyclones, providing new evidence for eye–eyewall mixing processes that may be related to intensity change.

Current affiliation: Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Sim D. Aberson, sim.aberson@noaa.gov
Save