• Beardsley, R. C., C. E. Dorman, C. A. Friehe, L. K. Rosenfield, and C. D. Wyant, 1987: Local atmospheric forcing during the Coastal Ocean Dynamics Experiment 1: A description of the marine boundary layer and atmospheric conditions over a northern California upwelling region. J. Geophys. Res., 92, 14671488, doi:10.1029/JC092iC02p01467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burk, S. D., and W. T. Thompson, 1996: The summertime low-level jet and marine boundary layer structure along the California coast. Mon. Wea. Rev., 124, 668686, doi:10.1175/1520-0493(1996)124<0668:TSLLJA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burk, S. D., T. Haack, and R. M. Samelson, 1999: Mesoscale simulation of supercritical, subcritical, and transcritical flow along coastal topography. J. Atmos. Sci., 56, 27802795, doi:10.1175/1520-0469(1999)056<2780:MSOSSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, Y., Z. Li, J. D. Farrara, and P. Huang, 2009: Blended sea surface temperatures from multiple satellites and in situ observations for coastal oceans. J. Atmos. Oceanic Technol., 26, 14151426, doi:10.1175/2009JTECHO592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • de Szoeke, S. P., S. Yuter, D. Mechem, C. W. Fairall, C. D. Burleyson, and P. Zuidema, 2012: Observations of stratocumulus clouds and their effect on the eastern Pacific surface heat budget along 20°S. J. Climate, 25, 85428567, doi:10.1175/JCLI-D-11-00618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., 1985: Evidence of Kelvin waves in California’s marine layer and related eddy generation. Mon. Wea. Rev., 113, 827839, doi:10.1175/1520-0493(1985)113<0827:EOKWIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., and C. D. Winant, 2000: The structure and variability of the marine atmosphere around the Santa Barbara Channel. Mon. Wea. Rev., 128, 261282, doi:10.1175/1520-0493(2000)128<0261:TSAVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., and D. Koračin, 2008: Response of the summer marine layer flow to an extreme California coastal bend. Mon. Wea. Rev., 136, 28942992, doi:10.1175/2007MWR2336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., D. P. Rogers, W. Nuss, and W. T. Thompson, 1999: Adjustment of the summer marine boundary layer around Point Sur, California. Mon. Wea. Rev., 127, 21432159, doi:10.1175/1520-0493(1999)127<2143:AOTSMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haack, T., S. D. Burk, C. Dorman, and D. Rodgers, 2001: Supercritical flow interaction within the Cape Blanco–Cape Mendocino orographic complex. Mon. Wea. Rev., 129, 688708, doi:10.1175/1520-0493(2001)129<0688:SFIWTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koračin, D., and C. E. Dorman, 2001: Marine atmospheric boundary layer divergence and clouds along California in June 1996. Mon. Wea. Rev., 129, 20402056, doi:10.1175/1520-0493(2001)129<2040:MABLDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., and et al. , 2000: Coastally trapped wind reversals: Progress toward understanding. Bull. Amer. Meteor. Soc., 81, 719743, doi:10.1175/1520-0477(2000)081<0719:CTWRPT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2000: Forcing of the summertime low-level jet along the California coast. J. Appl. Meteor., 39, 24212433, doi:10.1175/1520-0450(2000)039<2421:FOTSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., M. D. Burkhart, and A. R. Rodi, 2007: Determination of the horizontal pressure gradient force using global positioning system onboard an instrumented aircraft. J. Atmos. Oceanic Technol., 24, 521528, doi:10.1175/JTECH1986.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., D. A. Rahn, and D. Leon, 2013: Airborne observations of a Catalina eddy. Mon. Wea. Rev., 141, 33003313, doi:10.1175/MWR-D-13-00029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., D. A. Rahn, and D. Leon, 2014: Aircraft observations of the marine boundary layer adjustment near Point Arguello, California. J. Appl. Meteor. Climatol., 53, 970989, doi:10.1175/JAMC-D-13-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., D. A. Rahn, and D. Leon, 2015: Aircraft observations and numerical simulations of the developing stage of a southerly surge near Southern California. Mon. Wea. Rev., 143, 48834903, doi:10.1175/MWR-D-15-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., D. A. Rahn, and D. Leon, 2016a: Aircraft measurements and numerical simulations of an expansion fan off the California coast. J. Appl. Meteor. Climatol., 55, 20532062, doi:10.1175/JAMC-D-16-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., D. A. Rahn, and D. Leon, 2016b: Research aircraft determination of D-value cross sections. J. Atmos. Oceanic Technol., 33, 391396, doi:10.1175/JTECH-D-15-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, K. R., and T. R. Parish, 2001: A case study of the interaction of the summertime coastal jet with the California topography. Mon. Wea. Rev., 129, 530539, doi:10.1175/1520-0493(2001)129<0530:ACSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., and T. R. Parish, 2007: Diagnosis of the forcing and structure of the coastal jet near Cape Mendocino using in situ observations and numerical simulations. J. Appl. Meteor. Climatol., 46, 14551468, doi:10.1175/JAM2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., and C. J. Mitchell, 2016: Diurnal climatology of the boundary layer in Southern California using AMDAR temperature and wind profiles. J. Appl. Meteor. Climatol., 55, 11231137, doi:10.1175/JAMC-D-15-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., T. R. Parish, and D. Leon, 2013: Coastal jet adjustment near Point Conception, California, with calm conditions in the bight. Mon. Wea. Rev., 141, 38273839, doi:10.1175/MWR-D-13-00030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., T. R. Parish, and D. Leon, 2014: Coastal jet adjustment near Point Conception, California, with opposing wind in the bight. Mon. Wea. Rev., 142, 13441360, doi:10.1175/MWR-D-13-00177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., T. R. Parish, and D. Leon, 2016: Observations of large wind shear above the marine boundary layer near Point Buchon, California. J. Atmos. Sci., 73, 30593077, doi:10.1175/JAS-D-15-0363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, D. P., and et al. , 1998: Highlights of Coastal Waves 1996. Bull. Amer. Meteor. Soc., 79, 13071326, doi:10.1175/1520-0477(1998)079<1307:HOCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1992: Supercritical marine-layer flow along a smoothly varying coastline. J. Atmos. Sci., 49, 15711584, doi:10.1175/1520-0469(1992)049<1571:SMLFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R., 1987: The Catalina eddy and its effect on pollution in Southern California. Mon. Wea. Rev., 115, 837855, doi:10.1175/1520-0493(1987)115<0837:TCEAIE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., P. Wechsler, W. Kuestner, J. French, A. Rodi, B. Glover, M. Burkhart, and D. Lukens, 2009: Wyoming cloud lidar: Instrument description and applications. Opt. Express, 17, 13 57613 587, doi:10.1364/OE.17.013576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and et al. , 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, doi:10.1175/BAMS-D-11-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winant, C. D., C. E. Dorman, C. A. Friehe, and R. C. Beardsley, 1988: The marine boundary layer off northern California: An example of supercritical channel flow. J. Atmos. Sci., 45, 35883605, doi:10.1175/1520-0469(1988)045<3588:TMLONC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemba, J., and C. A. Friehe, 1987: The marine boundary layer jet in the coastal ocean dynamics experiment. J. Geophys. Res., 92, 14891496, doi:10.1029/JC092iC02p01489.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 8
PDF Downloads 20 20 7

Synthesis of Observations from the Precision Atmospheric Marine Boundary Layer Experiment (PreAMBLE)

View More View Less
  • 1 Department of Geography and Atmospheric Science, University of Kansas, Lawrence, Kansas
  • | 2 Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
© Get Permissions
Restricted access

Abstract

Research flights during the Precision Atmospheric Marine Boundary Layer Experiment (PreAMBLE) in Southern California during May–June 2012 focused on three main features found in the nearshore marine boundary layer (MBL): the coastal jet (10 flights), the Catalina eddy (3 flights), and the initiation of a southerly surge (1 flight). Several topics were examined with case studies, but results from individual events may not represent typical conditions. Although these flights do not constitute a long-term set of data, observations from PreAMBLE are used to find common features. Two main topics are addressed: the MBL collapse into the expansion fan, and the subsequent transition into the Santa Barbara Channel (SBC). The midmorning to late afternoon flights occur during moderate to strong northerly wind. Slope of the MBL in the expansion fan varies and wave perturbations can be embedded within the expansion fan. As the cool MBL flow turns into the SBC, it moves underneath a deeper and warmer MBL that originates from the southeast over the warmer ocean. The temperature inversion between the cool and warm MBL erodes toward the east until there is only the inversion between the warm MBL and free troposphere. The dissipation of the lower layer into the SBC observed by the aircraft differs from previous conceptual models that depict a continuous MBL that thins and then deepens again in the SBC, which was inferred from sparse observations and numerical simulations. Only one flight within the SBC detected a hydraulic jump from 100 to 200 m above the surface.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David A. Rahn, darahn@ku.edu

Abstract

Research flights during the Precision Atmospheric Marine Boundary Layer Experiment (PreAMBLE) in Southern California during May–June 2012 focused on three main features found in the nearshore marine boundary layer (MBL): the coastal jet (10 flights), the Catalina eddy (3 flights), and the initiation of a southerly surge (1 flight). Several topics were examined with case studies, but results from individual events may not represent typical conditions. Although these flights do not constitute a long-term set of data, observations from PreAMBLE are used to find common features. Two main topics are addressed: the MBL collapse into the expansion fan, and the subsequent transition into the Santa Barbara Channel (SBC). The midmorning to late afternoon flights occur during moderate to strong northerly wind. Slope of the MBL in the expansion fan varies and wave perturbations can be embedded within the expansion fan. As the cool MBL flow turns into the SBC, it moves underneath a deeper and warmer MBL that originates from the southeast over the warmer ocean. The temperature inversion between the cool and warm MBL erodes toward the east until there is only the inversion between the warm MBL and free troposphere. The dissipation of the lower layer into the SBC observed by the aircraft differs from previous conceptual models that depict a continuous MBL that thins and then deepens again in the SBC, which was inferred from sparse observations and numerical simulations. Only one flight within the SBC detected a hydraulic jump from 100 to 200 m above the surface.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David A. Rahn, darahn@ku.edu
Save