• Bacon, S., W. J. Gould, and Y. Jia, 2003: Open-ocean convection in the Irminger Sea. Geophys. Res. Lett., 30, 1246, doi:10.1029/2002GL016271.

  • Barstad, I., and S. Grønås, 2005: Southwesterly flows over southern Norway—Mesoscale sensitivity to large‐scale wind direction and speed. Tellus, 57A, 136152, doi:10.1111/j.1600-0870.2005.00112.x.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and et al. , 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 8386, doi:10.1038/nature12002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, P., R. Döscher, and T. Koenigk, 2013: Impacts of using spectral nudging on regional climate model RCA4 simulations of the Arctic. Geosci. Model Dev., 6, 849859, doi:10.5194/gmd-6-849-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, P., R. Döscher, and T. Koenigk, 2016: On the effects of constraining atmospheric circulation in a coupled atmosphere-ocean Arctic regional climate model. Climate Dyn., 46, 34993515, doi:10.1007/s00382-015-2783-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourke, R. H., and R. P. Garrett, 1987: Sea ice thickness distribution in the Arctic Ocean. Cold Reg. Sci. Technol., 13, 259280, doi:10.1016/0165-232X(87)90007-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, doi:10.1175/2008JCLI2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., A. B. Wilson, L.-S. Bai, G. W. K. Moore, and P. Bauer, 2016: A comparison of the regional Arctic System Reanalysis and the global ERA-Interim Reanalysis for the Arctic: The Arctic System Reanalysis. Quart. J. Roy. Meteor. Soc., 142, 644658, doi:10.1002/qj.2527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., M. Higgins, and M. Seefeldt, 2011: Performance of the Weather Research and Forecasting (WRF) Model for month-long pan-Arctic simulations. Mon. Wea. Rev., 139, 34693488, doi:10.1175/MWR-D-10-05065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., and et al. , 2017: Development of the Regional Arctic System Model (RASM): Near surface atmospheric climate sensitivity. J. Climate, doi:10.1175/JCLI-D-15-0775.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Wea. Forecasting, 30, 591612, doi:10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Marine Service Products, 2016: ASCAT: Global ocean daily gridded sea surface winds scatterometer. Copernicus Marine Service Products, accessed 9 June 2016. [Available online at http://marine.copernicus.eu/.]

  • de Jong, M. F., and L. de Steur, 2016: Strong winter cooling over the Irminger Sea in winter 2014-2015, exceptional deep convection, and the emergence of anomalously low SST. Geophys. Res. Lett., 43, 71067113, doi:10.1002/2016GL069596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Jong, M. F., H. M. van Aken, K. Våge, and R. S. Pickart, 2012: Convective mixing in the central Irminger Sea: 2002–2010. Deep-Sea Res., 63, 3651, doi:10.1016/j.dsr.2012.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., M. Weissman, S. Rahm, O. Reitebuch, R. Simmet, R. Busen, and H. Ólafsson, 2004: Wind lidar observations in the lee of Greenland. 11th Conf. on Mountain Meteorology, Bartlett, NH, Amer. Meteor. Soc. [Available online at https://ams.confex.com/ams/11Mountain/webprogram/Paper77231.html.]

  • Doyle, J. D., and M. A. Shapiro, 1999: Flow response to large-scale topography: The Greenland tip jet. Tellus, 51A, 728748, doi:10.1034/j.1600-0870.1996.00014.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DuVivier, A. K., and J. J. Cassano, 2013: Evaluation of WRF Model resolution on simulated mesoscale winds and surface fluxes near Greenland. Mon. Wea. Rev., 141, 941963, doi:10.1175/MWR-D-12-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DuVivier, A. K., and J. J. Cassano, 2015: Exploration of turbulent heat fluxes and wind stress curl in WRF and ERA-Interim during wintertime mesoscale wind events around southeastern Greenland. J. Geophys. Res. Atmos., 120, 35933609, doi:10.1002/2014JD022991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DuVivier, A. K., J. J. Cassano, A. P. Craig, J. Hamman, W. Maslowski, B. Nijssen, R. Osinski, and A. Roberts, 2016: Winter atmospheric buoyancy forcing and oceanic response during strong wind events around southeastern Greenland in the Regional Arctic System Model (RASM) for 1990–2010. J. Climate, 29, 975994, doi:10.1175/JCLI-D-15-0592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eaton, B., 2011: User’s guide to the Community Atmosphere Model CAM-5.1. NCAR, 38 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/ug5_1_1/ug.pdf.]

  • Glisan, J. M., W. J. Gutowski, J. J. Cassano, and M. E. Higgins, 2013: Effects of spectral nudging in WRF on Arctic temperature and precipitation simulations. J. Climate, 26, 39853999, doi:10.1175/JCLI-D-12-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greco, S., G. D. Emmitt, M. J. Kavaya, R. Kaker, J. J. Cassano, and K. M. Hines, 2016: Airborne Doppler wind lidar missions in the Arctic: Low level observations and comparison with models and other observing platforms. 20th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), New Orleans, LA, Amer. Meteor. Soc., 670. [Available online at https://ams.confex.com/ams/96Annual/webprogram/Paper289821.html.]

  • Harden, B. E., and I. A. Renfrew, 2012: On the spatial distribution of high winds off southeast Greenland. Geophys. Res. Lett., 39, L14806, doi:10.1029/2012GL051958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harden, B. E., I. A. Renfrew, and G. N. Petersen, 2011: A climatology of wintertime barrier winds off southeast Greenland. J. Climate, 24, 47014717, doi:10.1175/2011JCLI4113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, M., and J. J. Cassano, 2015: The climatological distribution of extreme Arctic winds and implications for ocean and sea ice processes. J. Geophys. Res. Atmos., 120, 73587377, doi:10.1002/2015JD023189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Icelandic Met Office, 2016: SEVIRI infrared images. Icelandic Met Office, accessed 28 July 2016. [Available online at http://brunnur.vedur.is/myndir/seviri/2015/05/21/.]

  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, doi:10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavaya, M. J., J. Y. Beyon, G. J. Koch, M. Petros, P. J. Petzar, U. N. Singh, B. C. Trieu, and J. Yu, 2014: The Doppler Aerosol Wind (DAWN) airborne, wind-profiling coherent-detection lidar system: Overview and preliminary flight results. J. Atmos. Oceanic Technol., 31, 826842, doi:10.1175/JTECH-D-12-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristjánsson, J. E., and et al. , 2011: The Norwegian IPY–THORPEX: Polar lows and Arctic fronts during the 2008 Andøya Campaign. Bull. Amer. Meteor. Soc., 92, 14431466, doi:10.1175/2011BAMS2901.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, doi:10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K. M., 2016: The representation of cumulus convection in high-resolution simulations of the 2013 Colorado Front Range flood. Mon. Wea. Rev., 144, 42654278, doi:10.1175/MWR-D-16-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., 2003: Gale force winds over the Irminger Sea to the east of Cape Farewell, Greenland. Geophys. Res. Lett., 30, 1894, doi:10.1029/2003GL018012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., 2012: A new look at Greenland flow distortion and its impact on barrier flow, tip jets and coastal oceanography. Geophys. Res. Lett., 39, L22806, doi:10.1029/2012GL054017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and I. Renfrew, 2005: Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland. J. Climate, 18, 37133725, doi:10.1175/JCLI3455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., R. S. Pickart, and I. A. Renfrew, 2008: Buoy observations from the windiest location in the world ocean, Cape Farewell, Greenland. Geophys. Res. Lett., 35, L18802, doi:10.1029/2008GL034845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., I. A. Renfrew, B. E. Harden, and S. H. Mernild, 2015: The impact of resolution on the representation of southeast Greenland barrier winds and katabatic flows. Geophys. Res. Lett., 42, 30113018, doi:10.1002/2015GL063550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., D. H. Bromwich, A. B. Wilson, I. Renfrew, and L. Bai, 2016: Arctic System Reanalysis improvements in topographically forced winds near Greenland. Quart. J. Roy. Meteor. Soc., 142, 20332045, doi:10.1002/qj.2798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and et al. , 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. II: Multilayer cloud. Quart. J. Roy. Meteor. Soc., 135, 10031019, doi:10.1002/qj.415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neff, W., G. P. Compo, F. Martin Ralph, and M. D. Shupe, 2014: Continental heat anomalies and the extreme melting of the Greenland ice surface in 2012 and 1889: Melting of Greenland in 1889 and 2012. J. Geophys. Res. Atmos., 119, 65206536, doi:10.1002/2014JD021470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigro, M. A., J. J. Cassano, M. A. Lazzara, and L. M. Keller, 2012: Case study of a barrier wind corner jet off the coast of the Prince Olav Mountains, Antarctica. Mon. Wea. Rev., 140, 20442063, doi:10.1175/MWR-D-11-00261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and et al. , 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oltmanns, M., F. Straneo, H. Seo, and G. W. K. Moore, 2015: The role of wave dynamics and small-scale topography for downslope wind events in southeast Greenland. J. Atmos. Sci., 72, 27862805, doi:10.1175/JAS-D-14-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, G. N., I. A. Renfrew, and G. W. K. Moore, 2009: An overview of barrier winds off southeastern Greenland during the Greenland Flow Distortion experiment. Quart. J. Roy. Meteor. Soc., 135, 19501967, doi:10.1002/qj.455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, M. H. Ribergaard, G. Moore, and R. F. Milliff, 2003: Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424, 152156, doi:10.1038/nature01729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and et al. , 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, doi:10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., and et al. , 2008: The Greenland Flow Distortion Experiment. Bull. Amer. Meteor. Soc., 89, 13071324, doi:10.1175/2008BAMS2508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., S. D. Outten, and G. W. K. Moore, 2009: An easterly tip jet off Cape Farewell, Greenland. I: Aircraft observations. Quart. J. Roy. Meteor. Soc., 135, 19191933, doi:10.1002/qj.513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, A., and et al. , 2015: Simulating transient ice–ocean Ekman transport in the Regional Arctic System Model and Community Earth System Model. Ann. Glaciol., 56, 211228, doi:10.3189/2015AoG69A760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S.-P. Xie, 2007: Mapping high sea winds from space: A global climatology. Bull. Amer. Meteor. Soc., 88, 19651978, doi:10.1175/BAMS-88-12-1965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Våge, K., and et al. , 2011: The Irminger Gyre: Circulation, convection, and interannual variability. Deep-Sea Res., 58, 590614, doi:10.1016/j.dsr.2011.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, doi:10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weissmann, M., R. Busen, A. Dörnbrack, S. Rahm, and O. Reitebuch, 2005: Targeted observations with an airborne wind lidar. J. Atmos. Oceanic Technol., 22, 17061719, doi:10.1175/JTECH1801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, X., and T.-Y. Lee, 2010: Role of convective parameterization in simulations of a convection band at grey-zone resolutions. Tellus, 62A, 617632, doi:10.1111/j.1600-0870.2010.00470.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 41 41 12
PDF Downloads 36 36 13

A Case Study of Observed and Modeled Barrier Flow in the Denmark Strait in May 2015

View More View Less
  • 1 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
  • | 2 Cooperative Institute for Research in Environmental Sciences, and Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
  • | 3 Simpson Weather Associates, Charlottesville, Virginia
© Get Permissions
Restricted access

Abstract

Mesoscale barrier jets in the Denmark Strait are common in winter months and have the capability to influence open ocean convection. This paper presents the first detailed observational study of a summertime (21 May 2015) barrier wind event in the Denmark Strait using dropsondes and observations from an airborne Doppler wind lidar (DWL). The DWL profiles agree well with dropsonde observations and show a vertically narrow (~250–400 m) barrier jet of 23–28 m s−1 near the Greenland coast that broadens (~300–1000 m) and strengthens farther off coast. In addition, otherwise identical regional high-resolution Weather Research and Forecasting (WRF) Model simulations of the event are analyzed at four horizontal grid spacings (5, 10, 25, and 50 km), two vertical resolutions (40 and 60 levels), and two planetary boundary layer (PBL) parameterizations [Mellor–Yamada–Nakanishi–Niino, version 2.5 (MYNN2.5) and University of Washington (UW)] to determine what model configurations best simulate the observed jet structure. Comparison of the WRF simulations with wind observations from satellites, dropsondes, and the airborne DWL scans indicate that the combination of both high horizontal resolution (5 km) and vertical resolution (60 levels) best captures observed barrier jet structure and speeds as well as the observed cloud field, including some convective clouds. Both WRF PBL schemes produced reasonable barrier jets with the UW scheme slightly outperforming the MYNN2.5 scheme. However, further investigation at high horizontal and vertical resolution is needed to determine the impact of the WRF PBL scheme on surface energy budget terms, particularly in the high-latitude maritime environment around Greenland.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0386.s1.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author: Alice K. DuVivier, duvivier@ucar.edu

Abstract

Mesoscale barrier jets in the Denmark Strait are common in winter months and have the capability to influence open ocean convection. This paper presents the first detailed observational study of a summertime (21 May 2015) barrier wind event in the Denmark Strait using dropsondes and observations from an airborne Doppler wind lidar (DWL). The DWL profiles agree well with dropsonde observations and show a vertically narrow (~250–400 m) barrier jet of 23–28 m s−1 near the Greenland coast that broadens (~300–1000 m) and strengthens farther off coast. In addition, otherwise identical regional high-resolution Weather Research and Forecasting (WRF) Model simulations of the event are analyzed at four horizontal grid spacings (5, 10, 25, and 50 km), two vertical resolutions (40 and 60 levels), and two planetary boundary layer (PBL) parameterizations [Mellor–Yamada–Nakanishi–Niino, version 2.5 (MYNN2.5) and University of Washington (UW)] to determine what model configurations best simulate the observed jet structure. Comparison of the WRF simulations with wind observations from satellites, dropsondes, and the airborne DWL scans indicate that the combination of both high horizontal resolution (5 km) and vertical resolution (60 levels) best captures observed barrier jet structure and speeds as well as the observed cloud field, including some convective clouds. Both WRF PBL schemes produced reasonable barrier jets with the UW scheme slightly outperforming the MYNN2.5 scheme. However, further investigation at high horizontal and vertical resolution is needed to determine the impact of the WRF PBL scheme on surface energy budget terms, particularly in the high-latitude maritime environment around Greenland.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0386.s1.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author: Alice K. DuVivier, duvivier@ucar.edu
Save