• Angel, J. R., and S. A. Isard, 1997: An observational study of the influence of the Great Lakes on the speed and intensity of passing cyclones. Mon. Wea. Rev., 125, 22282237, doi:10.1175/1520-0493(1997)125<2228:AOSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthold, F. E., and D. A. R. Kristovich, 2011: Observations of the cross-lake cloud and snow evolution in a lake-effect snow event. Mon. Wea. Rev., 139, 23862398, doi:10.1175/MWR-D-10-05001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., W. J. Steenburgh, P. G. Veals, T. W. Letcher, and J. R. Minder, 2016: Lake-effect mode and precipitation enhancement over the Tug Hill Plateau during OWLeS IOP2b. Mon. Wea. Rev., 144, 17291748, doi:10.1175/MWR-D-15-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., and N. F. Laird, 2008: The influence of ice cover on two lake-effect snow events over Lake Erie. Mon. Wea. Rev., 136, 27472763, doi:10.1175/2007MWR2310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, H. J., 1917: Influence of the Great Lakes upon movement of high and low pressure areas. Proceedings of the Second Pan-American Science Congress, Vol. 2 (No. 2), U.S. Government Printing Office, 432–459.

  • Danard, M. B., and G. V. Rao, 1972: Numerical study of the effects of the Great Lakes on a winter cyclone. Mon. Wea. Rev., 100, 374382, doi:10.1175/1520-0493(1972)100<0374:NSOTEO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danard, M. B., and A. C. McMillan, 1974: Further numerical studies of the effects of the Great Lakes on winter cyclones. Mon. Wea. Rev., 102, 166175, doi:10.1175/1520-0493(1974)102<0166:FNSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerbush, M., D. A. R. Kristovich, and N. F. Laird, 2008: Mesoscale boundary layer and heat flux variations over pack ice–covered Lake Erie. J. Appl. Meteor. Climatol., 47, 668682, doi:10.1175/2007JAMC1479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., and R. R. Braham Jr., 1983: Numerical simulation of the airflow over Lake Michigan for a major lake-effect snow event. Mon. Wea. Rev., 111, 205219, doi:10.1175/1520-0493(1983)111<0205:NSOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., M. Steiner, J. Pinto, and C. A. Alexander, 2013: Evaluation of cold-season precipitation forecasts generated by the hourly updating High-Resolution Rapid Refresh model. Wea. Forecasting, 28, 921939, doi:10.1175/WAF-D-12-00085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, doi:10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Weather Service, 2015: Historic winter storm of January 31–February 2, 2015. National Weather Service, accessed February 2017. [Available online at http://www.weather.gov/lot/2015_Feb01_Snow.]

  • Neralla, V. R., and M. B. Danard, 1975: Incorporation of parameterized convection in the synoptic study of large scale effects of the Great Lakes. Mon. Wea. Rev., 103, 388405, doi:10.1175/1520-0493(1975)103<0388:IOPCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norton, D. C., and S. J. Bolsenga, 1993: Spatiotemporal trends in lake effect and continental snowfall in the Laurentian Great Lakes, 1951–1980. J. Climate, 6, 19431956, doi:10.1175/1520-0442(1993)006<1943:STILEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., K. Holman, A. Zarrin, E. Fluck, S. Vavrus, and V. Bennington, 2013: Influence of the Laurentian Great Lakes on regional climate. J. Climate, 26, 789804, doi:10.1175/JCLI-D-12-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owens, N., 2016: The role of lake enhancement in the evolution of the 2011 Chicago-area Groundhog’s Day blizzard. M.S. thesis, Dept. of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, 56 pp.

  • Peace, R. L., Jr., and R. B. Sykes Jr., 1966: Mesoscale study of a lake effect snow storm. Mon. Wea. Rev., 94, 495507, doi:10.1175/1520-0493(1966)094<0495:MSOALE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1956: Motion and Motion Systems. Vol. I, Weather Analysis and Forecasting, McGraw-Hill, 428 pp.

  • Petterssen, S., and P. A. Calabrese, 1959: On some weather influences due to warming of the air by the Great Lakes in winter. J. Meteor., 16, 646652, doi:10.1175/1520-0469(1959)016<0646:OSWIDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and et al. , 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, doi:10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and et al. , 2014: Stability and charging characteristics of the comma-head region of continental winter cyclones. J. Atmos. Sci., 71, 15591582, doi:10.1175/JAS-D-13-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousounis, P. J., 1997: Lake-aggregate mesoscale disturbances. Part III: Description of a mesoscale aggregate vortex. Mon. Wea. Rev., 125, 11111134, doi:10.1175/1520-0493(1997)125<1111:LAMDPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousounis, P. J., 1998: Lake-aggregate mesoscale disturbances. Part IV: Development of a mesoscale aggregate vortex. Mon. Wea. Rev., 126, 31693188, doi:10.1175/1520-0493(1998)126<3169:LAMDPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousounis, P. J., and H. N. Shirer, 1992: Lake aggregate mesoscale disturbances. Part I: Linear analysis. J. Atmos. Sci., 49, 8096, doi:10.1175/1520-0469(1992)049<0080:LAMDPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousounis, P. J., and J. M. Fritsch, 1994: Lake-aggregate mesoscale disturbances. Part II: A case study of the effects on regional and synoptic-scale weather systems. Bull. Amer. Meteor. Soc., 75, 17931811, doi:10.1175/1520-0477(1994)075<1793:LAMDPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousounis, P. J., and G. E. Mann, 2000: Lake-aggregate mesoscale disturbances. Part V: Impacts on lake-effect precipitation. Mon. Wea. Rev., 128, 728745, doi:10.1175/1520-0493(2000)128<0728:LAMDPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, doi:10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vavrus, S., M. Notaro, and A. Zarrin, 2013: The role of ice cover in heavy lake-effect snowstorms over the Great Lakes basin as simulated by RegCM4. Mon. Wea. Rev., 141, 148165, doi:10.1175/MWR-D-12-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veals, P. V., and W. J. Steenburgh, 2015: Climatological characteristics and orographic enhancement of lake-effect precipitation east of Lake Ontario and over the Tug Hill Plateau. Mon. Wea. Rev., 143, 35913609, doi:10.1175/MWR-D-15-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. A., T. L. Lang, and W. A. Lyons, 2014: Synoptic scale outbreak of self-initiated upward lightning (SIUL) from tall structures during the central U.S. blizzard of 1–2 February 2011. J. Geophys. Res. Atmos., 119, 95309548, doi:10.1002/2014JD021691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiggin, B. L., 1950: Great snows of the Great Lakes. Weatherwise, 3, 123126, doi:10.1080/00431672.1950.9927065.

  • Wright, D. M., D. J. Posselt, and A. L. Steiner, 2013: Sensitivity of lake-effect snowfall to lake ice cover and temperature in the Great Lakes region. Mon. Wea. Rev., 141, 670689, doi:10.1175/MWR-D-12-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 92 21
PDF Downloads 78 78 26

The Contribution of Lake Enhancement to Extreme Snowfall within the Chicago–Milwaukee Urban Corridor during the 2011 Groundhog Day Blizzard

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
© Get Permissions
Restricted access

Abstract

This paper examines the impact of the Laurentian Great Lakes (GL) on atmospheric structure, stability, and precipitation within the Chicago–Milwaukee urban corridor during the passage of the 1–2 February 2011 extratropical cyclone. This storm produced the third largest snowfall [53.8 cm (21.2 in.)] recorded in a 130-yr period in the city of Chicago. Two simulations of the storm using the Weather Research and Forecasting (WRF) Model are described: the first with the GL present, and the second with the lakes replaced with land having characteristics of adjacent shores.

The GL were found to alter the surface temperature and moisture fields in their lee during cyclone passage. The changes were limited to the layer below the frontal inversion, but were significant enough to reduce the mean sea level pressure in some locations by 2.0–2.5 hPa, and raise the surface temperature and dewpoint temperature by 2°–4°C across several states downwind. In the Chicago–Milwaukee metropolitan corridor where the heavy snow occurred, the surface temperature and dewpoint temperature increased from +3° to +6°C as a result of heating and moistening of the lower atmosphere by the GL. Enhanced convergence also occurred along the downwind shoreline. Despite these changes, the areal impact on precipitation was surprisingly small, with liquid equivalent precipitation increases exceeding 5 mm limited to a small area over metropolitan Chicago late in the storm. The reason for the limited impact appeared to be the shallow nature of the cold air mass below the frontal inversion. Nevertheless, over metropolitan Chicago, as much as 20% of the snowfall could be attributed to the presence of the GL.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert M. Rauber, r-rauber@illinois.edu

Abstract

This paper examines the impact of the Laurentian Great Lakes (GL) on atmospheric structure, stability, and precipitation within the Chicago–Milwaukee urban corridor during the passage of the 1–2 February 2011 extratropical cyclone. This storm produced the third largest snowfall [53.8 cm (21.2 in.)] recorded in a 130-yr period in the city of Chicago. Two simulations of the storm using the Weather Research and Forecasting (WRF) Model are described: the first with the GL present, and the second with the lakes replaced with land having characteristics of adjacent shores.

The GL were found to alter the surface temperature and moisture fields in their lee during cyclone passage. The changes were limited to the layer below the frontal inversion, but were significant enough to reduce the mean sea level pressure in some locations by 2.0–2.5 hPa, and raise the surface temperature and dewpoint temperature by 2°–4°C across several states downwind. In the Chicago–Milwaukee metropolitan corridor where the heavy snow occurred, the surface temperature and dewpoint temperature increased from +3° to +6°C as a result of heating and moistening of the lower atmosphere by the GL. Enhanced convergence also occurred along the downwind shoreline. Despite these changes, the areal impact on precipitation was surprisingly small, with liquid equivalent precipitation increases exceeding 5 mm limited to a small area over metropolitan Chicago late in the storm. The reason for the limited impact appeared to be the shallow nature of the cold air mass below the frontal inversion. Nevertheless, over metropolitan Chicago, as much as 20% of the snowfall could be attributed to the presence of the GL.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert M. Rauber, r-rauber@illinois.edu
Save