A Gaussian Mixture Model Smoother for Continuous Nonlinear Stochastic Dynamical Systems: Applications

Tapovan Lolla Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Tapovan Lolla in
Current site
Google Scholar
PubMed
Close
and
Pierre F. J. Lermusiaux Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Pierre F. J. Lermusiaux in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The nonlinear Gaussian Mixture Model Dynamically Orthogonal (GMM–DO) smoother for high-dimensional stochastic fields is exemplified and contrasted with other smoothers by applications to three dynamical systems, all of which admit far-from-Gaussian distributions. The capabilities of the smoother are first illustrated using a double-well stochastic diffusion experiment. Comparisons with the original and improved versions of the ensemble Kalman smoother explain the detailed mechanics of GMM–DO smoothing and show that its accuracy arises from the joint GMM distributions across successive observation times. Next, the smoother is validated using the advection of a passive stochastic tracer by a reversible shear flow. This example admits an exact smoothed solution, whose derivation is also provided. Results show that the GMM–DO smoother accurately captures the full smoothed distributions and not just the mean states. The final example showcases the smoother in more complex nonlinear fluid dynamics caused by a barotropic jet flowing through a sudden expansion and leading to variable jets and eddies. The accuracy of the GMM–DO smoother is compared to that of the Error Subspace Statistical Estimation smoother. It is shown that even when the dynamics result in only slightly multimodal joint distributions, Gaussian smoothing can lead to a severe loss of information. The three examples show that the backward inferences of the GMM–DO smoother are skillful and efficient. Accurate evaluation of Bayesian smoothers for nonlinear high-dimensional dynamical systems is challenging in itself. The present three examples—stochastic low dimension, reversible high dimension, and irreversible high dimension—provide complementary and effective benchmarks for such evaluation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Pierre F. J. Lermusiaux, pierrel@mit.edu

Abstract

The nonlinear Gaussian Mixture Model Dynamically Orthogonal (GMM–DO) smoother for high-dimensional stochastic fields is exemplified and contrasted with other smoothers by applications to three dynamical systems, all of which admit far-from-Gaussian distributions. The capabilities of the smoother are first illustrated using a double-well stochastic diffusion experiment. Comparisons with the original and improved versions of the ensemble Kalman smoother explain the detailed mechanics of GMM–DO smoothing and show that its accuracy arises from the joint GMM distributions across successive observation times. Next, the smoother is validated using the advection of a passive stochastic tracer by a reversible shear flow. This example admits an exact smoothed solution, whose derivation is also provided. Results show that the GMM–DO smoother accurately captures the full smoothed distributions and not just the mean states. The final example showcases the smoother in more complex nonlinear fluid dynamics caused by a barotropic jet flowing through a sudden expansion and leading to variable jets and eddies. The accuracy of the GMM–DO smoother is compared to that of the Error Subspace Statistical Estimation smoother. It is shown that even when the dynamics result in only slightly multimodal joint distributions, Gaussian smoothing can lead to a severe loss of information. The three examples show that the backward inferences of the GMM–DO smoother are skillful and efficient. Accurate evaluation of Bayesian smoothers for nonlinear high-dimensional dynamical systems is challenging in itself. The present three examples—stochastic low dimension, reversible high dimension, and irreversible high dimension—provide complementary and effective benchmarks for such evaluation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Pierre F. J. Lermusiaux, pierrel@mit.edu
Save
  • Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1992: Inverse Methods in Physical Oceanography. Cambridge University Press, 346 pp.

    • Crossref
    • Export Citation
  • Bocquet, M., 2005: Reconstruction of an atmospheric tracer source using the principle of maximum entropy. I: Theory. Quart. J. Roy. Meteor. Soc., 131, 21912208, doi:10.1256/qj.04.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bocquet, M., and P. Sakov, 2013: Joint state and parameter estimation with an iterative ensemble Kalman smoother. Nonlinear Processes Geophys., 20, 803818, doi:10.5194/npg-20-803-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, H.-L., and J. P. How, 2010: Continuous trajectory planning of mobile sensors for informative forecasting. Automatica, 46, 12661275, doi:10.1016/j.automatica.2010.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., N. Sivakumaran, and R. Todling, 1994: A fixed-lag Kalman smoother for retrospective data assimilation. Mon. Wea. Rev., 122, 28382867, doi:10.1175/1520-0493(1994)122<2838:AFLKSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosme, E., J. Verron, P. Brasseur, J. Blum, and D. Auroux, 2012: Smoothing problems in a Bayesian framework and their linear Gaussian solutions. Mon. Wea. Rev., 140, 683695, doi:10.1175/MWR-D-10-05025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Texts in Applied Mathematics, Vol. 32, Springer, 465 pp.

    • Crossref
    • Export Citation
  • Durst, F., A. Melling, and J. Whitelaw, 1974: Low Reynolds number flow over a plane symmetric sudden expansion. J. Fluid Mech., 64, 111128, doi:10.1017/S0022112074002035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., and P. J. Van Leeuwen, 2000: An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev., 128, 18521867, doi:10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyink, G., and S. Kim, 2006: A maximum entropy method for particle filtering. J. Stat. Phys., 123, 10711128, doi:10.1007/s10955-006-9124-9.

  • Fearn, R., T. Mullin, and K. Cliffe, 1990: Nonlinear flow phenomena in a symmetric sudden expansion. J. Fluid Mech., 211, 595608, doi:10.1017/S0022112090001707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feppon, F., and P. F. J. Lermusiaux, 2017: A geometric approach to dynamical model-order reduction. SIAM J. Sci. Comput., in press.

  • Gelb, A., 1974: Applied Optimal Estimation. The MIT Press, 374 pp.

  • Haley, P. J., Jr., and Coauthors, 2009: Forecasting and reanalysis in the Monterey Bay/California Current region for the Autonomous Ocean Sampling Network-II experiment. Deep-Sea Res. II, 56, 127148, doi:10.1016/j.dsr2.2008.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higham, D. J., 2001: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev., 43, 525546, doi:10.1137/S0036144500378302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 2007: Stochastic Processes and Filtering Theory. Dover Publications, 400 pp.

  • Khare, S. P., J. L. Anderson, T. J. Hoar, and D. Nychka, 2008: An investigation into the application of an ensemble Kalman smoother to high-dimensional geophysical systems. Tellus, 60A, 97112, doi:10.1111/j.1600-0870.2007.00281.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., 1999a: Data assimilation via error subspace statistical estimation. Part II: Mid-Atlantic Bight shelfbreak front simulations and ESSE validation. Mon. Wea. Rev., 127, 14081432, doi:10.1175/1520-0493(1999)127<1408:DAVESS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., 1999b: Estimation and study of mesoscale variability in the Strait of Sicily. Dyn. Atmos. Oceans, 29, 255303, doi:10.1016/S0377-0265(99)00008-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., 2002: On the mapping of multivariate geophysical fields: Sensitivities to size, scales, and dynamics. J. Atmos. Oceanic Technol., 19, 16021637, doi:10.1175/1520-0426(2002)019<1602:OTMOMG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., 2007: Adaptive modeling, adaptive data assimilation and adaptive sampling. Physica D, 230, 172196, doi:10.1016/j.physd.2007.02.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., and A. R. Robinson, 1999: Data assimilation via error subspace statistical estimation. Part I: Theory and schemes. Mon. Wea. Rev., 127, 13851407, doi:10.1175/1520-0493(1999)127<1385:DAVESS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., D. G. M. Anderson, and C. J. Lozano, 2000: On the mapping of multivariate geophysical fields: Error and variability subspace estimates. Quart. J. Roy. Meteor. Soc., 126, 13871429, doi:10.1256/smsqj.56509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P. F. J., A. R. Robinson, P. J. Haley, and W. G. Leslie, 2002: Advanced interdisciplinary data assimilation: Filtering and smoothing via error subspace statistical estimation. Proc. OCEANS 2002 MTS/IEEE Conf., Biloxi, MS, IEEE, 795–802.

  • Lermusiaux, P. F. J., and Coauthors, 2006: Quantifying uncertainties in ocean predictions. Oceanography, 19, 92105, doi:10.5670/oceanog.2006.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lolla, T., 2016: Path planning and adaptive sampling in the coastal ocean. Ph.D. thesis, Massachusetts Institute of Technology, 315 pp. [Available online at https://dspace.mit.edu/handle/1721.1/103438.]

  • Lolla, T., and P. F. J. Lermusiaux, 2017: A Gaussian mixture model smoother for continuous nonlinear stochastic dynamical systems: Theory and scheme. Mon. Wea. Rev., 145, 27432761, doi:10.1175/MWR-D-16-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. N., E. F. Carter, and S. T. Blue, 1999: Data assimilation into nonlinear stochastic models. Tellus, 51A, 167194, doi:10.1034/j.1600-0870.1999.t01-2-00002.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., H. G. Arango, E. Di Lorenzo, B. D. Cornuelle, A. J. Miller, and D. J. Neilson, 2004: A comprehensive ocean prediction and analysis system based on the tangent linear and adjoint of a regional ocean model. Ocean Modell., 7, 227258, doi:10.1016/j.ocemod.2003.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., and Coauthors, 2009: Preparing to predict: The second Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay. Deep-Sea Res. II, 56, 6886, doi:10.1016/j.dsr2.2008.08.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapsis, T. P., and P. F. J. Lermusiaux, 2009: Dynamically orthogonal field equations for continuous stochastic dynamical systems. Physica D, 238, 23472360, doi:10.1016/j.physd.2009.09.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Särkkä, S., 2013: Bayesian Filtering and Smoothing. Institute of Mathematical Statistics Textbooks, Vol. 3, Cambridge University Press, 232 pp.

  • Sondergaard, T., and P. F. J. Lermusiaux, 2013a: Data assimilation with Gaussian mixture models using the dynamically orthogonal field equations. Part I: Theory and scheme. Mon. Wea. Rev., 141, 17371760, doi:10.1175/MWR-D-11-00295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sondergaard, T., and P. F. J. Lermusiaux, 2013b: Data assimilation with Gaussian mixture models using the dynamically orthogonal field equations. Part II: Applications. Mon. Wea. Rev., 141, 17611785, doi:10.1175/MWR-D-11-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueckermann, M. P., P. F. J. Lermusiaux, and T. P. Sapsis, 2013: Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows. J. Comput. Phys., 233, 272294, doi:10.1016/j.jcp.2012.08.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Leer, B., 1977: Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys., 23, 276299, doi:10.1016/0021-9991(77)90095-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

    • Crossref
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 230, 197208, doi:10.1016/j.physd.2006.09.040.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 518 178 76
PDF Downloads 266 54 2