Rear-Flank Outflow Dynamics and Thermodynamics in the 10 June 2010 Last Chance, Colorado, Supercell

Curtis J. Riganti National Drought Mitigation Center, and Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Curtis J. Riganti in
Current site
Google Scholar
PubMed
Close
and
Adam L. Houston Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Adam L. Houston in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 10 June 2010, the second Verification of the Origins of Tornadoes Experiment (VORTEX2) armada observed a supercell thunderstorm near Last Chance, Colorado. Tempest unmanned aircraft system (UAS) data collected in the rear-flank outflow revealed what appeared to be an elevated outflow head, turbulent wake, and a cold rear-flank internal surge (RFIS). Surface thermodynamic and kinematic data collected by the StickNet and mobile mesonet indicated that the outflow wake may have extended to or very near the surface, perhaps modifying or outright replacing the leading edge of the outflow at times. Single-Doppler data collected by the NOAA X-Pol Mobile Polarimetric Doppler Radar (NOXP) were supportive of the possibility of a downdraft in the outflow wake associated with low-level divergence. A conceptual model of the hypothesized rear-flank outflow structure in the nontornadic phase of the Last Chance supercell is presented. The observed turbulent wake is consistent with mixing associated with the release of Kelvin–Helmholtz instability rearward of a density current head. Observations also support the hypothesis that the RFIS would not have existed without the turbulent wake.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Curtis J. Riganti, criganti2@unl.edu

Abstract

On 10 June 2010, the second Verification of the Origins of Tornadoes Experiment (VORTEX2) armada observed a supercell thunderstorm near Last Chance, Colorado. Tempest unmanned aircraft system (UAS) data collected in the rear-flank outflow revealed what appeared to be an elevated outflow head, turbulent wake, and a cold rear-flank internal surge (RFIS). Surface thermodynamic and kinematic data collected by the StickNet and mobile mesonet indicated that the outflow wake may have extended to or very near the surface, perhaps modifying or outright replacing the leading edge of the outflow at times. Single-Doppler data collected by the NOAA X-Pol Mobile Polarimetric Doppler Radar (NOXP) were supportive of the possibility of a downdraft in the outflow wake associated with low-level divergence. A conceptual model of the hypothesized rear-flank outflow structure in the nontornadic phase of the Last Chance supercell is presented. The observed turbulent wake is consistent with mixing associated with the release of Kelvin–Helmholtz instability rearward of a density current head. Observations also support the hypothesis that the RFIS would not have existed without the turbulent wake.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Curtis J. Riganti, criganti2@unl.edu
Save
  • Beck, J., and C. C. Weiss, 2013: An assessment of low-level baroclinicity and vorticity within a simulated supercell. Mon. Wea. Rev., 141, 649669, doi:10.1175/MWR-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and L. Wicker, 2012: Mobile SMART-R2 radar data, version 1.0. Earth Observing Laboratory, UCAR–NCAR. Accessed May/June 2014. [Available online at http://data.eol.ucar.edu/dataset/114.145.]

  • Biggerstaff, M. I., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 12631274, doi:10.1175/BAMS-86-9-1263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. B. Houser, M. M. French, J. C. Snyder, G. D. Emmitt, I. PopStefanija, C. Baldi, and R. T. Bluth, 2014: Observations of the boundary layer near tornadoes and in supercells using a mobile, collocated, pulsed Doppler lidar and radar. J. Atmos. Oceanic Technol., 31, 302325, doi:10.1175/JTECH-D-13-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and C. D. Watkins, 1970: Observations of clear air turbulence by high power radar. Nature, 227, 260263, doi:10.1038/227260a0.

  • Burgess, D., 2011: Mobile NOXP radar data, version 1.0. Earth Observing Laboratory, UCAR–NCAR. Accessed May/June 2014. [Available online at http://data.eol.ucar.edu/dataset/114.117.]

  • Davies-Jones, R., and H. E. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114.

    • Crossref
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 11801210, doi:10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elston, J. S., J. Roadman, M. Stachura, B. Argrow, A. L. Houston, and E. W. Frew, 2011: The Tempest unmanned aircraft system for in situ observations of tornadic supercells: Design and VORTEX2 flight results. J. Field Rob., 28, 461483, doi:10.1002/rob.20394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., R. Damiani, and S. Haimov, 2006: Finescale vertical structure of a cold front as revealed by an airborne Doppler radar. Mon. Wea. Rev., 134, 251271, doi:10.1175/MWR3056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from Project ANSWERS. Mon. Wea. Rev., 135, 240246, doi:10.1175/MWR3288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halbert, K. T., W. G. Blumberg, and P. T. Marsh, 2015: SHARPpy: Fueling the Python cult. Fifth Symp. on Advances in Modeling and Analysis Using Python, Phoenix, AZ, Amer. Meteor. Soc., 402. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper270233.html.]

  • Hirth, B. D., J. L. Schroeder, and C. C. Weiss, 2008: Surface analysis of the rear-flank downdraft outflow in two tornadic supercells. Mon. Wea. Rev., 136, 23442363, doi:10.1175/2007MWR2285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klees, A., Y. P. Richardson, P. Markowski, C. Weiss, J. Wurman, and K. Kosiba, 2016: Comparison of the tornadic and nontornadic supercells intercepted by VORTEX2 on 10 June 2010. Mon. Wea. Rev., 144, 32013231, doi:10.1175/MWR-D-15-0345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. P. Richardson, P. M. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, doi:10.1175/MWR-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and P. Skinner, 2004: Thermodynamic and kinematic analysis of multiple RFD surges for the 24 June 2003 Manchester, SD cyclic tornadic supercell during Project ANSWERS 2003. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P11.2. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_82000.htm.]

  • Lee, B. D., C. A. Finley, and C. D. Karstens, 2012: The Bowdle, South Dakota, cyclic tornadic supercell of 22 May 2010: Surface analysis of rear-flank downdraft evolution and multiple internal surges. Mon. Wea. Rev., 140, 34193441, doi:10.1175/MWR-D-11-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpert, G., 2013: Mesovortex genesis. Ph.D. thesis, University of Nebraska–Lincoln, 117 pp. [Available online at http://digitalcommons.unl.edu/geoscidiss/39/.]

  • Liu, C., and M. W. Moncrieff, 1996: A numerical study of the effects of ambient flow and shear on density currents. Mon. Wea. Rev., 124, 22822303, doi:10.1175/1520-0493(1996)124<2282:ANSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 2000: Simulated density currents in idealized stratified environments. Mon. Wea. Rev., 128, 14201437, doi:10.1175/1520-0493(2000)128<1420:SDCIIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, doi:10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, doi:10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, J. M. Straka, R. Davies-Jones, Y. P. Richardson, and R. J. Trapp, 2008: Vortex lines within low-level mesocyclones obtained from pseudo-dual-Doppler radar observations. Mon. Wea. Rev., 136, 35133535, doi:10.1175/2008MWR2315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, J. Wurman, and P. M. Markowski, 2008: Single- and dual-Doppler analysis of a tornadic vortex and surrounding storm-scale flow in the Crowell, Texas, supercell of 30 April 2000. Mon. Wea. Rev., 136, 50175043, doi:10.1175/2008MWR2442.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashiko, W., H. Niino, and T. Kato, 2009: Numerical simulation of tornadogenesis in an outer-rainband minisupercell of Typhoon Shanshan on 17 September 2006. Mon. Wea. Rev., 137, 42384260, doi:10.1175/2009MWR2959.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., 1979: The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36, 24672478, doi:10.1175/1520-0469(1979)036<2467:TEMICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, Y., and P. Markowski, 2010: NSSL PSU Mobile Mesonet data, version 1.0. Earth Observing Laboratory, UCAR/NCAR. Accessed May/June 2014. [Available online at http://data.eol.ucar.edu/dataset.114.105.]

  • Schenkman, A. D., M. Xue, and D. T. Dawson II, 2016: The cause of internal outflow surges in a high-resolution simulation of the 8 May 2003 Oklahoma City tornadic supercell. J. Atmos. Sci., 73, 353370, doi:10.1175/JAS-D-15-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1997: Gravity Currents: In the Environment and the Laboratory. 2nd ed. Cambridge University Press, 244 pp.

  • Simpson, J. E., and R. E. Britter, 1980: A laboratory model of an atmospheric mesofront. Quart. J. Roy. Meteor. Soc., 106, 485500, doi:10.1002/qj.49710644907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, M. M. French, H. B. Bluestein, P. M. Markowski, and Y. P. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple internal rear-flank downdraft momentum surges in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 142, 29352960, doi:10.1175/MWR-D-13-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, R. P. Davies-Jones, and P. M. Markowski, 2007: An observational and idealized numerical examination of low-level counter-rotating vortices in the rear flank of supercells. Electron. J. Severe Storms Meteor., 2, 122. [Available online at http://www.ejssm.org/ojs/index.php/ejssm/issue/view/11.]

    • Search Google Scholar
    • Export Citation
  • UCAR/NCAR, 2010: Multi-Network Composite Highest Resolution Upper Air Data, version 1.0. Earth Observing Laboratory, UCAR–NCAR, data accessed May/June 2014, doi:10.5065/D6RN366M.

    • Crossref
    • Export Citation
  • Unidata, 2015: Integrated Data Viewer (IDV) version 5.0u1. doi:10.5065/D6RN35XM.

    • Crossref
    • Export Citation
  • Weiss, C. C., 2010a: Texas Tech University Sticknet Data, version 1.0. Earth Observing Laboratory, UCAR–NCAR. Accessed May/June 2014. [Available online at http://data.eol.ucar.edu/dataset/114.112.]

  • Weiss, C. C., 2010b: Texas Tech University Sticknet Mass Test Data, version 1.0. Earth Observing Laboratory, UCAR–NCAR. Accessed May/June 2014. [Available online at http://data.eol.ucar.edu/dataset/114.113.]

  • Weiss, C. C., and J. L. Schroeder, 2008: StickNet: A new portable, rapidly deployable surface observation system. Bull. Amer. Meteor. Soc., 89, 15021503.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. P. Richardson, P. M. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, doi:10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., 1992: Density currents in shear flows—A two-fluid model. J. Atmos. Sci., 49, 511524, doi:10.1175/1520-0469(1992)049<0511:DCISFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, M., Q. Xu, and K. K. Droegemeier, 1997: A theoretical and numerical study of density currents in nonconstant shear flows. J. Atmos. Sci., 54, 19982019, doi:10.1175/1520-0469(1997)054<1998:ATANSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamamoto, M. K., M. Fujiwara, T. Horinouchi, H. Hashiguchi, and S. Fukao, 2003: Kelvin–Helmholtz instability around the tropical tropopause observed with the Equatorial Atmosphere Radar. Geophys. Res. Lett., 30, 1476, doi:10.1029/2002GL016685.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2487 2084 717
PDF Downloads 256 59 6