Analysis of a Lower-Tropospheric Gravity Wave Train Using Direct and Remote Sensing Measurement Systems

Benjamin A. Toms School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Benjamin A. Toms in
Current site
Google Scholar
PubMed
Close
,
Jessica M. Tomaszewski Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Jessica M. Tomaszewski in
Current site
Google Scholar
PubMed
Close
,
David D. Turner National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David D. Turner in
Current site
Google Scholar
PubMed
Close
, and
Steven E. Koch National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Steven E. Koch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 10 August 2014, a gravity wave complex generated by convective outflow propagated across much of Oklahoma. The four-dimensional evolution of the wave complex was analyzed using a synthesis of near-surface and vertical observations from the Oklahoma Mesonet and Atmospheric Radiation Measurement (ARM) Southern Great Plains networks. Two Atmospheric Emitted Radiance Interferometers (AERI)—one located at the ARM SGP central facility in Lamont, Oklahoma, and the other in Norman, Oklahoma—were used in concert with a Doppler wind lidar (DWL) in Norman to determine the vertical characteristics of the wave complex. Hydraulic theory was applied to the AERI-derived observations to corroborate the observationally derived wave characteristics.

It was determined that a bore-soliton wave packet initially formed when a density current interacted with a nocturnal surface-based inversion and eventually propagated independently as the density current became diffuse. The soliton propagated within an elevated inversion, which was likely induced by ascending air at the leading edge of the bore head. Bore and density current characteristics derived from the observations agreed with hydraulic theory estimates to within a relative difference of 15%. While the AERI did not accurately resolve the postbore elevated inversion, an error propagation analysis suggested that uncertainties in the AERI and DWL observations had a negligible influence on the findings of this study.

Current affiliation: Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado.

Current affiliation: NOAA/Earth System Research Laboratory, Boulder, Colorado.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin A. Toms, ben.toms@colostate.edu

Abstract

On 10 August 2014, a gravity wave complex generated by convective outflow propagated across much of Oklahoma. The four-dimensional evolution of the wave complex was analyzed using a synthesis of near-surface and vertical observations from the Oklahoma Mesonet and Atmospheric Radiation Measurement (ARM) Southern Great Plains networks. Two Atmospheric Emitted Radiance Interferometers (AERI)—one located at the ARM SGP central facility in Lamont, Oklahoma, and the other in Norman, Oklahoma—were used in concert with a Doppler wind lidar (DWL) in Norman to determine the vertical characteristics of the wave complex. Hydraulic theory was applied to the AERI-derived observations to corroborate the observationally derived wave characteristics.

It was determined that a bore-soliton wave packet initially formed when a density current interacted with a nocturnal surface-based inversion and eventually propagated independently as the density current became diffuse. The soliton propagated within an elevated inversion, which was likely induced by ascending air at the leading edge of the bore head. Bore and density current characteristics derived from the observations agreed with hydraulic theory estimates to within a relative difference of 15%. While the AERI did not accurately resolve the postbore elevated inversion, an error propagation analysis suggested that uncertainties in the AERI and DWL observations had a negligible influence on the findings of this study.

Current affiliation: Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado.

Current affiliation: NOAA/Earth System Research Laboratory, Boulder, Colorado.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin A. Toms, ben.toms@colostate.edu
Save
  • Benjamin, T. B., and M. J. Lighthill, 1954: On cnoidal waves and bores. Proc. Roy. Soc. London, 224, 448460, doi:10.1098/rspa.1954.0172.

    • Search Google Scholar
    • Export Citation
  • Brock, F., K. Crawford, R. Elliott, G. Cuperus, S. Stadler, H. Johnson, and M. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, doi:10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christie, D. R., K. J. Muirhead, and A. L. Hales, 1979: Intrusive density flows in the lower troposphere: A source of atmospheric solitons. J. Geophys. Res., 84, 49594970, doi:10.1029/JC084iC08p04959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, R. H., R. K. Smith, and D. G. Reid, 1981: The Morning Glory of the Gulf of Carpentaria: An atmospheric undular bore. Mon. Wea. Rev., 109, 17261750, doi:10.1175/1520-0493(1981)109<1726:TMGOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., and K. R. Knupp, 2011: Radiometer and profiler analysis of the effects of a bore and a solitary wave on the stability of the nocturnal boundary layer. Mon. Wea. Rev., 139, 211223, doi:10.1175/2010MWR3376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., K. R. Knupp, and D. Herzmann, 2009: The spectacular undular bore in Iowa on 2 October 2007. Mon. Wea. Rev., 137, 495503, doi:10.1175/2008MWR2518.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1986: The effect of ambient stratification and moisture on the motion of atmospheric undular bores. J. Atmos. Sci., 43, 171181, doi:10.1175/1520-0469(1986)043<0171:TEOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 15331541, doi:10.1175/1520-0469(1988)045<1533:TOLLIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 11801210, doi:10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, W., W. Smith, H. Howell, R. Knuteson, H. Woolf, and H. Revercomb, 2003: Near-continuous profiling of temperature, moisture, and atmospheric stability using the atmospheric emitted radiance interferometer (AERI). J. Appl. Meteor., 42, 584597, doi:10.1175/1520-0450(2003)042<0584:NPOTMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and P. K. Rastogi, 1985: Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci., 20, 12471277, doi:10.1029/RS020i006p01247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, doi:10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goler, R. A., and M. J. Reeder, 2004: The generation of the Morning Glory. J. Atmos. Sci., 61, 13601377, doi:10.1175/1520-0469(2004)061<1360:TGOTMG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haase, S. P., and R. K. Smith, 1984: Morning Glory wave clouds in Oklahoma: A case study. Mon. Wea. Rev., 112, 20782089, doi:10.1175/1520-0493(1984)112<2078:MGWCIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haase, S. P., and R. K. Smith, 1989: The numerical simulation of atmospheric gravity currents. Part I: Neutrally-stable environments. Geophys. Astrophys. Fluid Dyn., 46, 133, doi:10.1080/03091928908208902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartung, D. C., J. A. Otkin, J. E. Martin, and D. D. Turner, 2010: The life cycle of an undular bore and its interaction with a shallow, intense cold front. Mon. Wea. Rev., 138, 886908, doi:10.1175/2009MWR3028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karan, H., and K. Knupp, 2009: Radar and profiler analysis of colliding boundaries: A case study. Mon. Wea. Rev., 137, 22032222, doi:10.1175/2008MWR2763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., S. E. Koch, C. Chen, J. W. Rottman, and M. L. Kaplan, 1995: The influence of the Rocky Mountains on the 13–14 April 1986 severe weather outbreak. Part II: Evolution of a prefrontal bore and its role in triggering a squall line. Mon. Wea. Rev., 123, 14231446, doi:10.1175/1520-0493(1995)123<1423:TIOTRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and N. A. Crook, 2003: An observational study of atmospheric bore formation from colliding density currents. Mon. Wea. Rev., 131, 29853002, doi:10.1175/1520-0493(2003)131<2985:AOSOAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klazura, G. E., and D. A. Imy, 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74, 12931311, doi:10.1175/1520-0477(1993)074<1293:ADOTIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K., 2006: Observational analysis of a gust front to bore to solitary wave transition within an evolving nocturnal boundary layer. J. Atmos. Sci., 63, 20162035, doi:10.1175/JAS3731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004a: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631776, doi:10.1175/JTECH-1662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789, doi:10.1175/JTECH-1663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and W. L. Clark, 1999: A nonclassical cold front observed during COPS-91: Frontal structure and the process of severe storm initiation. J. Atmos. Sci., 56, 28622890, doi:10.1175/1520-0469(1999)056<2862:ANCFOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, and D. Whiteman, 1991: Structure of an internal bore and dissipating gravity current as revealed by Raman lidar. Mon. Wea. Rev., 119, 857887, doi:10.1175/1520-0493(1991)119<0857:SOAIBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., W. Feltz, F. Fabry, M. Pagowski, B. Geerts, K. M. Bedka, D. O. Miller, and J. W. Wilson, 2008a: Turbulent mixing processes in atmospheric bores and solitary waves deduced from profiling systems and numerical simulation. Mon. Wea. Rev., 136, 13731400, doi:10.1175/2007MWR2252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., C. Flamant, J. W. Wilson, B. M. Gentry, and B. D. Jamison, 2008b: An atmospheric soliton observed with Doppler radar, differential absorption lidar, and a molecular Doppler lidar. J. Atmos. Oceanic Technol., 25, 12671287, doi:10.1175/2007JTECHA951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., M. T. Stoelinga, and P. V. Hobbs, 2002: A new look at the super outbreak of tornadoes on 34 April 1974. Mon. Wea. Rev., 130, 16331651, doi:10.1175/1520-0493(2002)130<1633:ANLATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. K., M. J. Churchfield, S. Lee, and A. Clifton, 2015: Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics. Atmos. Meas. Tech., 8, 907920, doi:10.5194/amt-8-907-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and R. H. Johnson, 2008: An observational and modeling study of an atmospheric internal bore during NAME 2004. Mon. Wea. Rev., 136, 41504167, doi:10.1175/2008MWR2486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, doi:10.1175/JTECH1976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasr-Azadani, M. M., and E. Meiburg, 2015: Gravity currents propagating into shear. J. Fluid Mech., 778, 552585, doi:10.1017/jfm.2015.398.

  • Pearson, G., F. Davies, and C. Collier, 2009: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Oceanic Technol., 26, 240250, doi:10.1175/2008JTECHA1128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, J. W., and J. E. Simpson, 1989: The formation of internal bores in the atmosphere: A laboratory model. Quart. J. Roy. Meteor. Soc., 115, 941963, doi:10.1002/qj.49711548809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, J. W., and F. Einaudi, 1993: Solitary waves in the atmosphere. J. Atmos. Sci., 50, 21162136, doi:10.1175/1520-0469(1993)050<2116:SWITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, J. W., and R. Grimshaw, 2002: Atmospheric internal solitary waves. Environmental Stratified Flows, R. Grimshaw, Ed., Springer, 61–88, doi:10.1007/0-306-48024-7_3.

    • Crossref
    • Export Citation
  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, doi:10.1002/qj.49707532308.

  • Sheng, C., M. Xue, and S. Gao, 2009: The structure and evolution of sea breezes during the Qingdao Olympics sailing test event in 2006. Adv. Atmos. Sci., 26, 132142, doi:10.1007/s00376-009-0132-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sisterson, D. L., R. A. Peppler, T. S. Cress, P. J. Lamb, and D. D. Turner, 2016: The ARM Southern Great Plains (SGP) Site. Meteor. Monogr., No. 57, Amer. Meteor. Soc., 6.1–6.14, doi:10.1175/AMSMONOGRAPHS-D-16-0004.1.

    • Crossref
    • Export Citation
  • Smith, R. K., G. Roff, and N. Crook, 1982: The Morning Glory: An extraordinary atmospheric undular bore. Quart. J. Roy. Meteor. Soc., 108, 937956, doi:10.1002/qj.49710845813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 12011221, doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, doi:10.1175/JAMC-D-13-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., R. O. Knuteson, H. E. Revercomb, C. Lo, and R. G. Dedecker, 2006: Noise reduction of Atmospheric Emitted Radiance Interferometer (AERI) observations using principal component analysis. J. Atmos. Oceanic Technol., 23, 12231238, doi:10.1175/JTECH1906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and D. E. Kingsmill, 1995: Structure of an atmospheric undular bore generated from colliding boundaries during CaPE. Mon. Wea. Rev., 123, 13741393, doi:10.1175/1520-0493(1995)123<1374:SOAAUB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, C. D., and T. P. Lane, 2016: A case of an undular bore and prefrontal precipitation in the Australian Alps. Mon. Wea. Rev., 144, 26232644, doi:10.1175/MWR-D-15-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 315 96 4
PDF Downloads 181 54 0