Sensitivities of 1-km Forecasts of 24 May 2011 Tornadic Supercells to Microphysics Parameterizations

Derek R. Stratman Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Derek R. Stratman in
Current site
Google Scholar
PubMed
Close
and
Keith A. Brewster Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Keith A. Brewster in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 24 May 2011, Oklahoma experienced an outbreak of tornadoes, including one rated EF5 on the enhanced Fujita (EF) scale and two rated EF4. The extensive observation network in this area makes this an ideal case to examine the impact of using five different microphysics parameterization schemes, including single-, double-, and triple-moment microphysics, in an efficient high-resolution data assimilation system suitable for nowcasting and short-term forecasting with low latencies. Additionally, the real-time configuration of the 1-km ARPS, which assimilated increments produced by 3DVAR with cloud analysis using incremental analysis updating (IAU), had success providing a good baseline forecast. ARPS forecasts of 0–2 h are verified using observation-point, neighborhood, and object-based verification techniques. The object-based verification technique uses updraft helicity fields to represent mesocyclone centers, which are verified against tornado locations from three supercells of interest. Varying levels of success in the forecasts are found and appear to be dependent on the complexity of the storm interaction, with early forecasts of isolated storms exhibiting the most success. Verification scores indicate that the multimoment microphysics schemes tend to produce better forecasts of tornadic supercells. However, some of the forecasts from the single-moment microphysics schemes perform as well as or better than the forecasts from the multimoment microphysics schemes.

Current affiliation: National Severe Storms Laboratory, Norman, Oklahoma.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Derek R. Stratman, derek.stratman@noaa.gov

Abstract

On 24 May 2011, Oklahoma experienced an outbreak of tornadoes, including one rated EF5 on the enhanced Fujita (EF) scale and two rated EF4. The extensive observation network in this area makes this an ideal case to examine the impact of using five different microphysics parameterization schemes, including single-, double-, and triple-moment microphysics, in an efficient high-resolution data assimilation system suitable for nowcasting and short-term forecasting with low latencies. Additionally, the real-time configuration of the 1-km ARPS, which assimilated increments produced by 3DVAR with cloud analysis using incremental analysis updating (IAU), had success providing a good baseline forecast. ARPS forecasts of 0–2 h are verified using observation-point, neighborhood, and object-based verification techniques. The object-based verification technique uses updraft helicity fields to represent mesocyclone centers, which are verified against tornado locations from three supercells of interest. Varying levels of success in the forecasts are found and appear to be dependent on the complexity of the storm interaction, with early forecasts of isolated storms exhibiting the most success. Verification scores indicate that the multimoment microphysics schemes tend to produce better forecasts of tornadic supercells. However, some of the forecasts from the single-moment microphysics schemes perform as well as or better than the forecasts from the multimoment microphysics schemes.

Current affiliation: National Severe Storms Laboratory, Norman, Oklahoma.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Derek R. Stratman, derek.stratman@noaa.gov
Save
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. L. Weisman, 2000: The interaction of numerically simulated supercells initiated along lines. Mon. Wea. Rev., 128, 31283149, doi:10.1175/1520-0493(2000)128<3128:TIONSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewster, K. A., and D. R. Stratman, 2015: An updated high resolution hydrometeor analysis system using radar and other data. 27th Conf. on Weather Analysis and Forecasting/23rd Conf. on Numerical Weather Prediction, Chicago, IL, Amer. Meteor. Soc., 31. [Available online at https://ams.confex.com/ams/27WAF23NWP/webprogram/Paper273811.html.]

  • Brewster, K. A., and D. R. Stratman, 2016: Tuning an analysis and incremental analysis updating assimilation for an efficient high resolution forecast system. 20th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), New Orleans, LA, Amer. Meteor. Soc., 10.6. [Available online at https://ams.confex.com/ams/96Annual/webprogram/Paper289235.html.]

  • Brewster, K. A., K. W. Thomas, J. Gao, J. Brotzge, M. Xue, and Y. Wang, 2010: A nowcasting system using full physics numerical weather prediction initialized with CASA and NEXRAD radar data. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 9.4. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_176053.htm.]

  • Brewster, K. A., F. H. Carr, K. W. Thomas, and D. R. Stratman, 2015: Utilizing heterogeneous radar systems in a real-time high resolution analysis and short-term forecast system in the Dallas/Fort Worth Testbed. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 14A.3. [Available online at https://ams.confex.com/ams/37RADAR/webprogram/Paper276230.html.]

  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, doi:10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J. A., and C. M. Luttrell, 2015: Genesis of the Chickasha, Oklahoma, tornado on 24 May 2011 as observed by CASA radar and Oklahoma Mesonet. J. Oper. Meteor., 3, 5969, doi:10.15191/nwajom.2015.0306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., 1990: Parameterizations for the absorption of solar radiation by O2 and CO2 with application to climate studies. J. Climate, 3, 209217, doi:10.1175/1520-0442(1990)003<0209:PFTAOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49, 762772, doi:10.1175/1520-0469(1992)049<0762:ASRMFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp. [Available online at https://permanent.access.gpo.gov/gpo60401/19950009331.pdf.]

  • Clark, A. J., J. Gao, P. T. Marsh, T. Smith, J. S. Kain, J. Correia Jr., M. Xue, and F. Kong, 2013: Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity. Wea. Forecasting, 28, 387407, doi:10.1175/WAF-D-12-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006a: Object-based verification of precipitation forecasts. Part I: Methods and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, doi:10.1175/MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006b: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 17851795, doi:10.1175/MWR3146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, doi:10.1175/2009MWR2956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, M. Xue, J. A. Milbrandt, and A. Shapiro, 2015: Sensitivity of real-data simulations of the 3 May 1999 Oklahoma City tornadic supercell and associated tornadoes to multimoment microphysics. Part I: Storm- and tornado-scale numerical forecasts. Mon. Wea. Rev., 143, 22412265, doi:10.1175/MWR-D-14-00279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dial, G. L., and J. P. Racy, 2004: Forecasting short term convective mode and evolution for severe storms initiated along synoptic boundaries. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 11A.2. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_81495.htm.]

  • Ebert, E. E., 2008: Fuzzy verification of high-resolution gridded forecasts: A review and proposed framework. Meteor. Appl., 15, 5164, doi:10.1002/met.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2009: Neighborhood verification: A strategy for rewarding close forecasts. Wea. Forecasting, 24, 14981510, doi:10.1175/2009WAF2222251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, C. L. Ziegler, and D. R. MacGorman, 2012: Application of a lightning data assimilation technique in the WRF-ARW model at cloud-resolving scales for the tornado outbreak of 24 May 2011. Mon. Wea. Rev., 140, 26092627, doi:10.1175/MWR-D-11-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., P. S. Skinner, L. J. Wicker, and H. B. Bluestein, 2015: Documenting a rare tornado merger observed in the 24 May 2011 El Reno–Piedmont, Oklahoma, supercell. Mon. Wea. Rev., 143, 30253043, doi:10.1175/MWR-D-14-00349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469, doi:10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., L. Tian, L. Li, M. McLinden, and J. I. Cervantes, 2013: Airborne radar observations of severe hailstorms: Implications for future spaceborne radar. J. Appl. Meteor. Climatol., 52, 18511867, doi:10.1175/JAMC-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Houser, J. H., H. B. Bluestein, and J. C. Snyder, 2015: Rapid-scan, polarimetric, Doppler radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The “El Reno, Oklahoma” storm of 24 May 2011. Mon. Wea. Rev., 143, 26852710, doi:10.1175/MWR-D-14-00253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006a: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698, doi:10.1175/MWR3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, J. Gao, and K. Brewster, 2006b: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699721, doi:10.1175/MWR3093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., D. Stensrud, L. Wicker, P. Minnis, and R. Palikonda, 2015: Simultaneous radar and satellite data storm-scale assimilation using an ensemble Kalman filter approach for 24 May 2011. Mon. Wea. Rev., 143, 165194, doi:10.1175/MWR-D-14-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., M. Miller, and T. Smith, 2013: Quality control of accumulated fields by applying spatial and temporal constraints. J. Atmos. Oceanic Technol., 30, 745758, doi:10.1175/JTECH-D-12-00128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, doi:10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., C. Hannon, J. Frame, E. Lancaster, A. Pietrycha, R. Edwards, and R. L. Thompson, 2003: Characteristics of vertical wind profiles near supercells obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12621272, doi:10.1175/1520-0434(2003)018<1262:COVWPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817, doi:10.1175/2009BAMS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, doi:10.1175/JTECH1976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, doi:10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, doi:10.1175/JAS3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCDC, 2011: Storm Data. Vol. 53, No. 5, 944 pp.

  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 2016: The tornado outbreak of May 24, 2011. [Available online at www.weather.gov/oun/events-20110524-fastfacts.]

  • Putnam, B. J., M. Xue, Y. Jung, N. Snook, and G. Zhang, 2014: The analysis and prediction of microphysical states and polarimetric radar variables in a mesoscale convective system using double-moment microphysics, multinetwork radar data, and the ensemble Kalman filter. Mon. Wea. Rev., 142, 141162, doi:10.1175/MWR-D-13-00042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., S. Rahimi, C. K. Potvin, and L. Orf, 2015: On the use of advection correction in trajectory calculations. J. Atmos. Sci., 72, 42614280, doi:10.1175/JAS-D-15-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SPC, 2016: Severe weather event: May 24, 2011. [Available online at http://www.spc.noaa.gov/exper/archive/event.php?date=20110524.]

  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 459 pp.

    • Crossref
    • Export Citation
  • Sun, W.-Y., and C.-Z. Chang, 1986: Diffusion model for a convective layer. Part I: Numerical simulation of convective boundary layer. J. Climate Appl. Meteor., 25, 14451453, doi:10.1175/1520-0450(1986)025<1445:DMFACL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., P. L. Heinselman, and L. J. Wicker, 2015: Impacts of a storm merger on the 24 May 2011 El Reno, Oklahoma, tornadic supercell. Wea. Forecasting, 30, 501524, doi:10.1175/WAF-D-14-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wainwright, C. E., D. T. Dawson II, M. Xue, and G. Zhang, 2014: Diagnosing the intercept parameters of the exponential drop size distributions in a single-moment microphysics scheme and impact on supercell storm simulations. J. Appl. Meteor. Climatol., 53, 20722090, doi:10.1175/JAMC-D-13-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., N. Yussouf, and D. J. Stensrud, 2014: Ensemble Kalman filter analyses and forecasts of a severe mesoscale convective system using different choices of microphysics schemes. Mon. Wea. Rev., 142, 32433263, doi:10.1175/MWR-D-13-00260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., L. Wei, and K. Nai, 2015: Analyzing vortex winds in radar-observed tornadic mesocyclones for nowcast applications. Wea. Forecasting, 30, 11401157, doi:10.1175/WAF-D-15-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, doi:10.1007/s007030070003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143165, doi:10.1007/s007030170027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., D.-H. Wang, J.-D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139170, doi:10.1007/s00703-001-0595-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., J. Schleif, F. Kong, K. W. Thomas, Y. Wang, and K. Zhu, 2013: Track and intensity forecasting of hurricanes: Impact of convection-permitting resolution and global ensemble Kalman filter analysis on 2010 Atlantic season forecasts. Wea. Forecasting, 28, 13661384, doi:10.1175/WAF-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, doi:10.1175/MWR-D-12-00237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zalesak, S. T., 1979: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 31, 335362, doi:10.1016/0021-9991(79)90051-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2060 1578 574
PDF Downloads 352 113 14