Ensemble Sensitivity Analysis of Wind Ramp Events with Applications to Observation Targeting

Nicholas H. Smith Texas Tech University, Lubbock, Texas

Search for other papers by Nicholas H. Smith in
Current site
Google Scholar
PubMed
Close
and
Brian C. Ancell Texas Tech University, Lubbock, Texas

Search for other papers by Brian C. Ancell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Wind ramps present a significant challenge to the wind energy industry and are a source of inefficiency for wind farm owners and power grid operators. One approach to investigating wind ramp predictability is ensemble sensitivity analysis (ESA), which relates a scalar response function to an atmospheric variable at an earlier time. Applying ESA to wind ramps is challenging because the transient nature of the events makes it difficult to capture the ramp with a traditional response function that is fixed in space and time. This study introduces four response functions that are allowed to vary in space and time in order to identify key features of the wind ramp, such as the timing of the ramp and the largest horizontal extent of the ramp. Comparing these event-based response functions to a traditional response function reveals key differences in the sensitivity, which indicates that different aspects of the wind ramp event are sensitive to different atmospheric features. The use of multiple response functions is shown to provide a more complete understanding of the ramp event when compared to using only a traditional response function. Observation targeting is addressed by manipulating the ESA fields of six synoptically driven wind ramp events, with results showing that the horizontal location of the optimal target region varies widely between cases and a single observation location likely would not provide benefit to each case. These results indicate that a dynamic observing system would be preferable to a fixed observation for improving wind ramp forecasts.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicholas H. Smith, n.smith@ttu.edu

Abstract

Wind ramps present a significant challenge to the wind energy industry and are a source of inefficiency for wind farm owners and power grid operators. One approach to investigating wind ramp predictability is ensemble sensitivity analysis (ESA), which relates a scalar response function to an atmospheric variable at an earlier time. Applying ESA to wind ramps is challenging because the transient nature of the events makes it difficult to capture the ramp with a traditional response function that is fixed in space and time. This study introduces four response functions that are allowed to vary in space and time in order to identify key features of the wind ramp, such as the timing of the ramp and the largest horizontal extent of the ramp. Comparing these event-based response functions to a traditional response function reveals key differences in the sensitivity, which indicates that different aspects of the wind ramp event are sensitive to different atmospheric features. The use of multiple response functions is shown to provide a more complete understanding of the ramp event when compared to using only a traditional response function. Observation targeting is addressed by manipulating the ESA fields of six synoptically driven wind ramp events, with results showing that the horizontal location of the optimal target region varies widely between cases and a single observation location likely would not provide benefit to each case. These results indicate that a dynamic observing system would be preferable to a fixed observation for improving wind ramp forecasts.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicholas H. Smith, n.smith@ttu.edu
Save
  • Ancell, B., and G. J. Hakim, 2007a: Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134, doi:10.1175/2007MWR1904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancell, B., and G. J. Hakim, 2007b: Interpreting adjoint and ensemble sensitivity toward the development of observation targeting strategies. Meteor. Z., 16, 635642, doi:10.1127/0941-2948/2007/0250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancell, B., and L. A. McMurdie, 2013: Ensemble adaptive data assimilation techniques applied to land-falling North American cyclones. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, S. K. Park and L. Xu, Eds., Springer, 555–575 pp., doi:10.1007/978-3-642-35088-7_23.

    • Crossref
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758, doi:10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. D. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, N. D. Kelley, R. M. Hardesty, and W. A. Brewer, 2013: Wind energy meteorology: Insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution Doppler lidar. Bull. Amer. Meteor. Soc., 94, 883902, doi:10.1175/BAMS-D-11-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5 : Implementation and initial results. Mon. Wea. Rev., 132, 897914, doi:10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bednarczyk, C. N., and B. C. Ancell, 2015: Ensemble sensitivity analysis applied to a southern plains convective event. Mon. Wea. Rev., 143, 230249, doi:10.1175/MWR-D-13-00321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berliner, L. M., Z.-Q. Lu, and C. Snyder, 1999: Statistical design for adaptive weather observations. J. Atmos. Sci., 56, 25362552, doi:10.1175/1520-0469(1999)056<2536:SDFAWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604, doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., R. H. Langland, G. D. Rohaly, and T. E. Rosmond, 1999: An assessment of the singular-vector approach to targeted observing using the FASTEX dataset. Quart. J. Roy. Meteor. Soc., 125, 32993327, doi:10.1002/qj.49712556109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., and R. D. Torn, 2008: Ensemble synoptic analysis. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 147–161.

    • Crossref
    • Export Citation
  • Hanley, K. E., D. J. Kirshbaum, N. M. Roberts, and G. Leoncini, 2013: Sensitivities of a squall line over central Europe in a convective-scale ensemble. Mon. Wea. Rev., 141, 112133, doi:10.1175/MWR-D-12-00013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, A. J., C. C. Weiss, and B. C. Ancell, 2016: Ensemble sensitivity analysis for mesoscale forecasts of dryline convection initiation. Mon. Wea. Rev., 144, 41614182, doi:10.1175/MWR-D-15-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., 2005: Issues in targeted observing. Quart. J. Roy. Meteor. Soc., 131, 34093425, doi:10.1256/qj.05.130.

  • Langland, R. H., R. Gelaro, G. D. Rohaly, and M. A. Shapiro, 1999: Targeted observations in FASTEX: Adjoint-based targeting procedures and data impact experiments in IOP17 and IOP18. Quart. J. Roy. Meteor. Soc., 125, 32413270, doi:10.1002/qj.49712556107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., and X. Zou, 2001: The impact of NORPEX targeted dropsondes on the analysis and 2–3-day forecasts of a landfalling Pacific winter storm using NCEP 3DVAR and 4DVAR systems. Mon. Wea. Rev., 129, 19872004, doi:10.1175/1520-0493(2001)129<1987:TIONTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399414, doi:10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, R. D. Torn, and M. L. Weisman, 2016: Impact of assimilating dropsonde observations from MPEX on ensemble forecasts of severe weather events. Mon. Wea. Rev., 144, 37993823, doi:10.1175/MWR-D-15-0407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, J. L., W. S. Burgett, K. B. Haynie, I. Sonmez, G. D. Skwira, A. L. Doggett, and J. W. Lipe, 2005: The West Texas Mesonet: A technical overview. J. Atmos. Oceanic Technol., 22, 211223, doi:10.1175/JTECH-1690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., J. K. Lundquist, and S. J. Schreck, 2009: Research needs for wind resource characterization. Bull. Amer. Meteor. Soc., 90, 535538, doi:10.1175/2008BAMS2729.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Thompson, G., and P. Field, 2006: A new bulk microphysical parameterization for WRF (& MM5). Seventh WRF Users’ Workshop, Boulder, CO, NCAR, 5.3. [Available online at http://www.mmm.ucar.edu/wrf/users/workshops/WS2006/abstracts/Session05/5_3_Thompson.pdf.]

  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, doi:10.1175/2007MWR2132.1.

  • Torn, R. D., and G. J. Hakim, 2009: Initial condition sensitivity of western Pacific extratropical transitions determined using ensemble-based sensitivity analysis. Mon. Wea. Rev., 137, 33883406, doi:10.1175/2009MWR2879.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502, doi:10.1175/MWR3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Department of Energy, 2008: 20% wind energy by 2030: Increasing wind energy’s contribution to U.S. electricity supply. Department of Energy Rep. DOE/GO-102008-2567, 228 pp. [Available online at http://www.nrel.gov/docs/fy08osti/41869.pdf#page=37&zoom=auto,0,792.]

  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd. ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Zack, J., E. Natenberg, S. Young, J. Manobianco, and C. Kamath, 2010: Application of ensemble sensitivity analysis to observation targeting for short-term wind speed forecasting. Lawrence Livermore National Laboratory Tech. Rep. LLNL-TR-424442, 32 pp. [Available online at https://e-reports-ext.llnl.gov/pdf/387510.pdf.]

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 275 89 27
PDF Downloads 159 37 9