Abstract
Tornadoes are capable of lofting large pieces of debris that present irregular shapes, near-random orientations, and a wide range of dielectric constants to polarimetric radars. The unique polarimetric signature associated with lofted debris is called the tornadic debris signature (TDS). While ties between TDS characteristics and tornado- and storm-scale kinematic processes have been speculated upon or investigated using photogrammetry and single-Doppler analyses, little work has been done to document the three-dimensional wind field associated with the TDS.
Data collected by the Oklahoma City, Oklahoma (KTLX), and Norman, Oklahoma (KOUN), WSR-88D S-band radars as well as the University of Oklahoma’s (OU) Advanced Radar Research Center’s Polarimetric Radar for Innovations in Meteorology and Engineering (OU-PRIME) C-band radar are used to construct single- and dual-Doppler analyses of a tornadic supercell that produced an EF4 tornado near the towns of Moore and Choctaw, Oklahoma, on 10 May 2010. This study documents the spatial distribution of polarimetric radar variables and how each variable relates to kinematic fields such as vertical velocity and vertical vorticity. Special consideration is given to polarimetric signatures associated with subvortices within the tornado. An observation of negative differential reflectivity (
© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).