Kinematic and Polarimetric Radar Observations of the 10 May 2010, Moore–Choctaw, Oklahoma, Tornadic Debris Signature

Casey B. Griffin School of Meteorology and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Casey B. Griffin in
Current site
Google Scholar
PubMed
Close
,
David J. Bodine Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma, and Advanced Study Program, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David J. Bodine in
Current site
Google Scholar
PubMed
Close
, and
Robert D. Palmer School of Meteorology and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Robert D. Palmer in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Tornadoes are capable of lofting large pieces of debris that present irregular shapes, near-random orientations, and a wide range of dielectric constants to polarimetric radars. The unique polarimetric signature associated with lofted debris is called the tornadic debris signature (TDS). While ties between TDS characteristics and tornado- and storm-scale kinematic processes have been speculated upon or investigated using photogrammetry and single-Doppler analyses, little work has been done to document the three-dimensional wind field associated with the TDS.

Data collected by the Oklahoma City, Oklahoma (KTLX), and Norman, Oklahoma (KOUN), WSR-88D S-band radars as well as the University of Oklahoma’s (OU) Advanced Radar Research Center’s Polarimetric Radar for Innovations in Meteorology and Engineering (OU-PRIME) C-band radar are used to construct single- and dual-Doppler analyses of a tornadic supercell that produced an EF4 tornado near the towns of Moore and Choctaw, Oklahoma, on 10 May 2010. This study documents the spatial distribution of polarimetric radar variables and how each variable relates to kinematic fields such as vertical velocity and vertical vorticity. Special consideration is given to polarimetric signatures associated with subvortices within the tornado. An observation of negative differential reflectivity () at the periphery of tornado subvortices is presented and discussed. Finally, dual-Doppler wind retrievals are compared to single-Doppler axisymmetric wind fields to illustrate the merits of each method.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Casey Griffin, casey.griffin@ou.edu

Abstract

Tornadoes are capable of lofting large pieces of debris that present irregular shapes, near-random orientations, and a wide range of dielectric constants to polarimetric radars. The unique polarimetric signature associated with lofted debris is called the tornadic debris signature (TDS). While ties between TDS characteristics and tornado- and storm-scale kinematic processes have been speculated upon or investigated using photogrammetry and single-Doppler analyses, little work has been done to document the three-dimensional wind field associated with the TDS.

Data collected by the Oklahoma City, Oklahoma (KTLX), and Norman, Oklahoma (KOUN), WSR-88D S-band radars as well as the University of Oklahoma’s (OU) Advanced Radar Research Center’s Polarimetric Radar for Innovations in Meteorology and Engineering (OU-PRIME) C-band radar are used to construct single- and dual-Doppler analyses of a tornadic supercell that produced an EF4 tornado near the towns of Moore and Choctaw, Oklahoma, on 10 May 2010. This study documents the spatial distribution of polarimetric radar variables and how each variable relates to kinematic fields such as vertical velocity and vertical vorticity. Special consideration is given to polarimetric signatures associated with subvortices within the tornado. An observation of negative differential reflectivity () at the periphery of tornado subvortices is presented and discussed. Finally, dual-Doppler wind retrievals are compared to single-Doppler axisymmetric wind fields to illustrate the merits of each method.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Casey Griffin, casey.griffin@ou.edu
Save
  • Barnes, S., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, doi:10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S., 1973: Mesoscale objective map analysis using weighted time-series. NOAA Tech. Memo. ERL NSSL-62, 60 pp. [Available online at https://docs.lib.noaa.gov/noaa_documents/OAR/NSSL/NOAA_TM_ERL_NSSL/ERL_NSSL_62.pdf.]

  • Bluestein, H. B., 2013: Severe Convective Storms and Tornadoes, Observations and Dynamics. Springer-Verlag, 456 pp.

    • Crossref
    • Export Citation
  • Bluestein, H. B., W.-C. Lee, M. Bell, C. C. Weiss, and A. L. Pazmany, 2003: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part II: Tornado-vortex structure. Mon. Wea. Rev., 131, 29682984, doi:10.1175/1520-0493(2003)131<2968:MDROOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, R. L. Tanamachi, S. Frasier, K. Hardwick, F. Junyent, and A. Pazmany, 2007: Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Mon. Wea. Rev., 135, 15221543, doi:10.1175/MWR3349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., M. R. Kumjian, R. D. Palmer, P. L. Heinselman, and A. V. Ryzhkov, 2013: Tornado damage estimation using polarimetric radar. Wea. Forecasting, 28, 139158, doi:10.1175/WAF-D-11-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., R. D. Palmer, and G. Zhang, 2014: Dual-wavelength polarimetric radar analyses of tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 242261, doi:10.1175/JAMC-D-13-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., T. Maruyama, R. D. Palmer, C. J. Fulton, H. B. Bluestein, and D. C. Lewellen, 2016a: Sensitivity of tornado dynamics to debris loading. J. Atmos. Sci., 73, 27832801, doi:10.1175/JAS-D-15-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., R. Palmer, T. Maruyama, C. Fulton, Y. Zhu, and B. L. Cheong, 2016b: Simulated frequency dependence of radar observations of tornadoes. J. Atmos. Oceanic Technol., 33, 18251842, doi:10.1175/JTECH-D-15-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Church, C. R., J. T. Snow, G. L. Baker, and E. M. Agee, 1979: Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation. J. Atmos. Sci., 36, 17551776, doi:10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1986: Thunderstorm Morphology and Dynamics. University of Oklahoma Press, 432 pp.

  • Dowell, D. C., C. R. Alexander, J. M. Wurman, and L. J. Wicker, 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar-reflectivity patterns and wind-measurement errors. Mon. Wea. Rev., 133, 15011524, doi:10.1175/MWR2934.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., D. Burgess, E. R. Mansell, and L. Wicker, 2015: Bulk hook echo raindrop sizes retrieved using mobile, polarimatric Doppler radar observations. J. Appl. Meteor. Climatol., 54, 423450, doi:10.1175/JAMC-D-14-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, and J. Snyder, 2016: A finescale radar examination of the tornadic debris signature and weak-echo reflectivity band associated with a large, violent tornado. Mon. Wea. Rev., 144, 41014130, doi:10.1175/MWR-D-15-0408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1970: Raindrop size distribution and Doppler velocities. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 153–156.

  • Koch, S. E., M. desJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 14871503, doi:10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K. A., and J. Wurman, 2010: The three-dimensional axisymmetric wind field structure of the Spencer, South Dakota, 1998 tornado. J. Atmos. Sci., 67, 30743083, doi:10.1175/2010JAS3416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K. A., and J. M. Wurman, 2013: The three-dimensional structure and evolution of a tornado boundary layer. Wea. Forecasting, 28, 15521561, doi:10.1175/WAF-D-13-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K. A., R. J. Trapp, and J. Wurman, 2008: An analysis of the axis-symmetric three-dimensional low level wind field in a tornado using mobile radar observations. Geophys. Res. Lett., 35, L05805, doi:10.1029/2007GL031851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2011: Precipitation properties of supercell hook echoes. Electron. J. Severe Storms Meteor., 6 (5). [Available online at http://ejssm.org/ojs/index.php/ejssm/article/viewArticle/93.]

  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, doi:10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm and cold season applications. J. Oper. Meteor., 1, 243264, doi:10.15191/nwajom.2013.0120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., D. J. Bodine, B. L. Cheong, and R. D. Palmer, 2015: High-temporal resolution polarimetric X-band Doppler radar observations of the 20 May 2013 Moore, Oklahoma, tornado. Mon. Wea. Rev., 143, 27112735, doi:10.1175/MWR-D-14-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., and J. Wurman, 2005: Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999. J. Atmos. Sci., 62, 23732393, doi:10.1175/JAS3489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., B. J.-D. Jou, P.-L. Chang, and S.-M. Deng, 1999: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part I: Doppler velocity patterns and the GBVTD technique. Mon. Wea. Rev., 127, 24192439, doi:10.1175/1520-0493(1999)127<2419:TCKSRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, doi:10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., B. Gong, and W. S. Lewellen, 2004: Effects of debris on near-surface tornado dynamics. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 15.5. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_81449.htm.]

  • Lewellen, D. C., B. Gong, and W. S. Lewellen, 2008: Effects of finescale debris on near-surface tornado dynamics. J. Atmos. Sci., 65, 32473262, doi:10.1175/2008JAS2686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majcen, M., P. Markowski, Y. Richardson, D. Dowell, and J. Wurman, 2008: Multipass objective analyses of Doppler radar data. J. Atmos. Oceanic Technol., 25, 18451858, doi:10.1175/2008JTECHA1089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2013: On the use of Doppler radar–derived wind fields to diagnose the secondary circulations of tornadoes. J. Atmos. Sci., 70, 11601171, doi:10.1175/JAS-D-12-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Palmer, R. D., and Coauthors, 2011: The 10 May 2010 tornado outbreak in central Oklahoma: Potential for new science with high-resolution polarimetric radar. Bull. Amer. Meteor. Soc., 92, 871891, doi:10.1175/2011BAMS3125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H., A. Ryzhkov, D. Zrnić, and K. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauley, P. M., and X. Wu, 1990: The theoretical, discrete, and actual response of the Barnes objective scheme for one- and two-dimensional fields. Mon. Wea. Rev., 118, 11451163, doi:10.1175/1520-0493(1990)118<1145:TTDAAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C., D. Betten, L. Wicker, K. Elmore, and M. Biggerstaff, 2012: 3DVAR versus traditional dual-Doppler wind retrievals of a simulated supercell thunderstorm. Mon. Wea. Rev., 140, 34873494, doi:10.1175/MWR-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., D. Burgess, D. Zrnić, T. Smith, and S. Giangrande, 2002: Polarimetric analysis of a 3 May 1999 tornado. Preprints, 21th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 14.2. [Available online at https://ams.confex.com/ams/pdfpapers/47348.pdf.]

  • Ryzhkov, A., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005a: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, doi:10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005b: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, doi:10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saari, M. D., R. M. Lawton, C. J. Schultz, and L. D. Carey, 2014: Early characteristics of the polarimetric tornadic debris signature associated with the 20 May 2013 Newcastle–Moore, Oklahoma, tornado. J. Oper. Meteor., 2, 110114, doi:10.15191/nwajom.2014.0210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., and Coauthors, 2012a: Dual-polarization tornadic debris signatures Part I: Examples and utility in an operational setting. Electron. J. Oper. Meteor., 13, 120137. [Available online at http://nwafiles.nwas.org/ej/pdf/2012-EJ9.pdf.]

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., and Coauthors, 2012b: Dual-polarization tornadic debris signatures Part II: Comparisons and caveats. Electron. J. Oper. Meteor., 13, 138158. [Available online at http://nwafiles.nwas.org/ej/pdf/2012-EJ10.pdf.]

    • Search Google Scholar
    • Export Citation
  • Schwarz, C. M., and D. W. Burgess, 2011: Supercell polarimetric signatures at X-band: Data from VORTEX2. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 7B.4. [Available online at https://ams.confex.com/ams/35Radar/webprogram/Manuscript/Paper191298/CS_AMS_Radar_Conf_Paper.pdf.]

  • Snyder, J. C., and A. V. Ryzhkov, 2015: Automated detection of polarimetric tornado debris signatures using a hydrometeor classification algorithm. J. Appl. Meteor. Climatol., 54, 18611870, doi:10.1175/JAMC-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, W. C. Lee, M. Bell, and A. L. Pazmany, 2007: Ground-based velocity track display (GBVTD) analysis of W-band radar data in a tornado near Stockton, Kansas, on 15 May 1999. Mon. Wea. Rev., 135, 783800, doi:10.1175/MWR3325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, J. B. Houser, S. J. Frasier, and K. M. Hardwick, 2012: Mobile X-band, polarimetric Doppler radar observations of the 4 May 2007 Greensburg, Kansas, tornadic supercell. Mon. Wea. Rev., 140, 21032125, doi:10.1175/MWR-D-11-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164, 476490, doi:10.1098/rspa.1938.0032.

  • Van Den Broeke, M. S., 2015: Polarimetric tornadic debris signature variability and debris fallout signatures. J. Appl. Meteor. Climatol., 54, 23892405, doi:10.1175/JAMC-D-15-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., and S. T. Jauernic, 2014: Spatial and temporal characteristics of polarimetric tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 22172231, doi:10.1175/JAMC-D-14-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., D. S. Zrnić, S. M. Ellis, D. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and C. Liu, 1998: The Garden City, Kansas, storm during VORTEX 95. Part II: The wall cloud and tornado. Mon. Wea. Rev., 126, 393408, doi:10.1175/1520-0493(1998)126<0393:TGCKSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., P. Stauffer, W. C. Lee, N. T. Atkins, and J. Wurman, 2012: Finescale structure of the LaGrange, Wyoming, tornado during VORTEX2: GBVTD and photogrammetric analyses. Mon. Wea. Rev., 140, 33973418, doi:10.1175/MWR-D-12-00036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., N. T. Atkins, K. M. Butler, H. B. Bluestein, K. Thiem, J. Snyder, and J. Houser, 2015: Photogrammetric analysis of the 2013 El Reno tornado combined with mobile X-band polarimetric radar data. Mon. Wea. Rev., 143, 26572683, doi:10.1175/MWR-D-15-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and Coauthors, 2016: Areal damage survey of the 2013 El Reno tornado combined with mobile radar data. Mon. Wea. Rev., 144, 17491776, doi:10.1175/MWR-D-15-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and T. Yu, 2015: Novel tornado detection using an adaptive neuro-fuzzy system with S-band polarimetric weather radar. J. Atmos. Oceanic Technol., 32, 195208, doi:10.1175/JTECH-D-14-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WDTB, 2013: Dual-polarization radar training. National Weather Service Warning Decision Training Branch. [Available online at http://www.wdtb.noaa.gov/courses/dualpol/Outreach/.]

  • Wurman, J., 2002: The multiple-vortex structure of a tornado. Wea. Forecasting, 17, 473505, doi:10.1175/1520-0434(2002)017<0473:TMVSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164, doi:10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and K. Kosbia, 2013: Finescale radar observations of tornadoes and mesocyclone structures. Wea. Forecasting, 28, 11571174, doi:10.1175/WAF-D-12-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, doi:10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1616 1351 674
PDF Downloads 197 54 5