A Statistical Investigation of the Dependence of Tropical Cyclone Intensity Change on the Surrounding Environment

Ning Lin Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Ning Lin in
Current site
Google Scholar
PubMed
Close
,
Renzhi Jing Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Renzhi Jing in
Current site
Google Scholar
PubMed
Close
,
Yuyan Wang Department of Operations Research and Financial Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Yuyan Wang in
Current site
Google Scholar
PubMed
Close
,
Emmi Yonekura Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Emmi Yonekura in
Current site
Google Scholar
PubMed
Close
,
Jianqing Fan Department of Operations Research and Financial Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Jianqing Fan in
Current site
Google Scholar
PubMed
Close
, and
Lingzhou Xue Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Lingzhou Xue in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A progression of advanced statistical methods is applied to investigate the dependence of the 6-h tropical cyclone (TC) intensity change on various environmental variables, including the recently developed ventilation index (VI). The North Atlantic (NA) and western North Pacific (WNP) observations from 1979 to 2014 are used. As a first step, a model of the intensity change is developed as a linear function of 13 variables used in operational models, obtaining statistical R2 values of 0.26 for NA and 0.3 for WNP. Statistical variable selection techniques are then applied to significantly reduce the number of predictors (to 5–11), while keeping similar R2 values with linear or nonlinear models. Further reduction of the number of predictors (to 5–7) and significant improvement of R2 (0.41–0.53) are obtained with mixture modeling, indicating that the dependence of TC intensification on the environment is nonhomogeneous. Applying VI as the environmental predictor in the mixture modeling gives R2 results (0.41–0.74) similar to or better than those with more environmental variables, confirming that VI is a dominant environmental variable, although its effect on TC intensification is quite heterogeneous. However, the overall predictive R2 results of the mixture models are relatively low (<0.3), as the considered environmental variables have limited predictability for the occurrence of extreme/rapid intensification. Finally, nonparametric regression with six predictors [current intensity, previous intensity change, the three components of VI (maximum potential intensity, shear, and entropy deficit), and 200-hPa zonal wind] performs relatively well with predictive R2 values of 0.37 for NA and 0.36 for WNP. The predictability of these statistical models may be further improved by adding oceanic and inner-core process predictors.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ning Lin, nlin@princeton.edu

Abstract

A progression of advanced statistical methods is applied to investigate the dependence of the 6-h tropical cyclone (TC) intensity change on various environmental variables, including the recently developed ventilation index (VI). The North Atlantic (NA) and western North Pacific (WNP) observations from 1979 to 2014 are used. As a first step, a model of the intensity change is developed as a linear function of 13 variables used in operational models, obtaining statistical R2 values of 0.26 for NA and 0.3 for WNP. Statistical variable selection techniques are then applied to significantly reduce the number of predictors (to 5–11), while keeping similar R2 values with linear or nonlinear models. Further reduction of the number of predictors (to 5–7) and significant improvement of R2 (0.41–0.53) are obtained with mixture modeling, indicating that the dependence of TC intensification on the environment is nonhomogeneous. Applying VI as the environmental predictor in the mixture modeling gives R2 results (0.41–0.74) similar to or better than those with more environmental variables, confirming that VI is a dominant environmental variable, although its effect on TC intensification is quite heterogeneous. However, the overall predictive R2 results of the mixture models are relatively low (<0.3), as the considered environmental variables have limited predictability for the occurrence of extreme/rapid intensification. Finally, nonparametric regression with six predictors [current intensity, previous intensity change, the three components of VI (maximum potential intensity, shear, and entropy deficit), and 200-hPa zonal wind] performs relatively well with predictive R2 values of 0.37 for NA and 0.36 for WNP. The predictability of these statistical models may be further improved by adding oceanic and inner-core process predictors.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ning Lin, nlin@princeton.edu
Save
  • Balaguru, K., G. R. Foltz, L. R. Leung, E. D. Asaro, K. A. Emanuel, H. Liu, and S. E. Zedler, 2015: Dynamic potential intensity: An improved representation of the ocean’s impact on tropical cyclones. Geophys. Res. Lett., 42, 67396746, doi:10.1002/2015GL064822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, doi:10.1007/BF01030791.

  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653, doi:10.1175/JCLI4188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D., E. Yonekura, C. Karamperidou, N. Cavanaugh, and K. Serafin, 2013: US hurricanes and economic damage: Extreme value perspective. Nat. Hazards Rev., 14, 237246, doi:10.1061/(ASCE)NH.1527-6996.0000102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, doi:10.1175/MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 2009: A simplified dynamical system for tropical cyclone intensity prediction. Mon. Wea. Rev., 137, 6882, doi:10.1175/2008MWR2513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, doi:10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, and L. K. Shay, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, doi:10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., T. D. B. Lambert, and M. A. Boothe, 2007: Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Wea. Forecasting, 22, 747762, doi:10.1175/WAF1015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 39603968, doi:10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., S. Ravela, E. Vivant, and C. Risi, 2006: A statistical deterministic approach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299314, doi:10.1175/BAMS-87-3-299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and I. Gijbels, 1996: Local Polynomial Modelling and Its Applications. Chapman and Hall, 341 pp.

  • Friedman, J., T. Hastie, and R. Tibshirani, 2010: Regularization paths for generalized linear models via coordinate descent. J. Stat. Software, 33, doi:10.18637/jss.v033.i01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaffney, S. J., A. W. Robertson, P. Smyth, S. J. Camargo, and M. Ghil, 2007: Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dyn., 29, 423440, doi:10.1007/s00382-007-0235-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geisler, J. E., 1970: Linear theory on the response of a two layer ocean to a moving hurricane. Geophys. Fluid Dyn., 1, 249272, doi:10.1080/03091927009365774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and S. Jewson, 2007: Statistical modeling of North Atlantic tropical cyclone tracks. Tellus, 59A, 486498, doi:10.1111/j.1600-0870.2007.00240.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and E. Yonekura, 2013: North American tropical cyclone landfall and SST: A statistical model study. J. Climate, 26, 84228439, doi:10.1175/JCLI-D-12-00756.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastie, T. J., and R. J. Tibshirani, 1990: Generalized Additive Models. Monographs on Statistics and Applied Probability, Vol. 43, CRC Press, 335 pp.

  • Hayfield, T., and J. S. Racine, 2008: Nonparametric econometrics: The np package. J. Stat. Software, 27, doi:10.18637/jss.v027.i05.

  • Huang, J., J. L. Horowitz, and F. Wei, 2010: Variable selection in nonparametric additive models. Ann. Stat., 38, 22822313, doi:10.1214/09-AOS781.

  • James, M. K., and L. B. Mason, 2005: Synthetic tropical cyclone database. J. Waterway, Port, Ocean Eng., 131, 181192, doi:10.1061/(ASCE)0733-950X(2005)131:4(181).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L., 2006: Time to replace the Saffir–Simpson hurricane scale? Eos, Trans. Amer. Geophys. Union, 87, 36, doi:10.1029/2006EO010003.

  • Kantha, L., 2008: Tropical cyclone destruction potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 89, 219221, doi:10.1175/BAMS-89-2-219.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, doi:10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 13741396, doi:10.1175/WAF-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, 688699, doi:10.1175/WAF863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., M. K. Tippett, S. J. Camargo, and A. H. Sobel, 2015: Probabilistic multiple-linear regression modeling for tropical cyclone intensity. Mon. Wea. Rev., 143, 933954, doi:10.1175/MWR-D-14-00171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., M. K. Tippett, A. H. Sobel, and S. J. Camargo, 2016: Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat. Commun., 7, 10625, doi:10.1038/ncomms10625.

    • Search Google Scholar
    • Export Citation
  • Lin, I. I., and Coauthors, 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 18781882, doi:10.1002/grl.50091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, N., and D. Chavas, 2012: On hurricane parametric wind and applications in storm surge modeling. J. Geophys. Res., 117, D09120, doi:10.1029/2011JD017126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, N., and K. Emanuel, 2016: Grey swan tropical cyclones. Nat. Climate Change, 6, 106111, doi:10.1038/nclimate2777.

  • Lloyd, I. D., and G. A. Vecchi, 2011: Observational evidence for oceanic controls on hurricane intensity. J. Climate, 24, 11381153, doi:10.1175/2010JCLI3763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLachlan, G. J., and T. Krishnan, 1997: The EM Algorithm and Extensions. John Wiley and Sons, 274 pp.

  • Musgrave, K. D., R. K. Taft, J. L. Vigh, B. D. McNoldy, and W. H. Schubert, 2012: Time evolution of the intensity and size of tropical cyclones. J. Adv. Model. Earth Syst., 4, M08001, doi:10.1029/2011MS000104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owens, B. and G. J. Holland, 2009: The Willis hurricane index. Second Int. Summit on Hurricanes and Climate Change, Corfu, Greece.

  • Price, J. F., 2009: Metrics of hurricane–ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean Sci., 5, 351368, doi:10.5194/os-5-351-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, doi:10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simon, N., J. Friedman, T. Hastie, and R. Tibshirani, 2013: A sparse-group lasso. J. Comput. Graph. Stat., 22, 231245, doi:10.1080/10618600.2012.681250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Städler, N., P. Bühlmann, and S. Van de Geer, 2010: 1-penalization for mixture regression models. TEST, 19, 209256, doi:10.1007/s11749-010-0197-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. E. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, doi:10.1175/BAMS-D-11-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tibshirani, R., 1996: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc., 58B, 267288.

  • Vickery, P. J., P. F. Skerlj, and L. A. Twisdale, 2000: Simulation of hurricane risk in the U.S. using an empirical track model. J. Struct. Eng., 126, 12221237, doi:10.1061/(ASCE)0733-9445(2000)126:10(1222).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., D. Wadhera, L. Twisdale Jr., and F. Lavelle, 2009: U.S. hurricane wind speed risk and uncertainty. J. Struct. Eng., 135, 301320, doi:10.1061/(ASCE)0733-9445(2009)135:3(301).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., and H. Zou, 2015: A fast unified algorithm for solving group-lasso penalize learning problems. Stat. Comput., 25, 11291141, doi:10.1007/s11222-014-9498-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yonekura, E., and T. M. Hall, 2011: A statistical model of tropical cyclone tracks in the western North Pacific with ENSO-dependent cyclogenesis. J. Appl. Meteor. Climatol., 50, 17251739, doi:10.1175/2011JAMC2617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, M., and Y. Lin, 2006: Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc., 68B, 4967, doi:10.1111/j.1467-9868.2005.00532.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C. H., and J. Huang, 2008: The sparsity and bias of the lasso selection in high-dimensional linear regression. Ann. Stat., 36, 15671594, doi:10.1214/07-AOS520.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 623 167 14
PDF Downloads 587 128 10