Impact of a Front–Dryline Merger on Convection Initiation near a Mountain Ridge in Beijing

Rui Qin Institute of Urban Meteorology, China Meteorological Administration, and Beijing Weather Modification Office, Beijing, China

Search for other papers by Rui Qin in
Current site
Google Scholar
PubMed
Close
and
Mingxuan Chen Institute of Urban Meteorology, China Meteorological Administration, Beijing, China

Search for other papers by Mingxuan Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A case study is presented of convection initiation (CI) resulting from the merger of a cold front with a dryline in southwestern Beijing, China, on the afternoon of 11 June 2011. This process is analyzed with S-band Doppler radar data, surface automatic weather station data, and mesoscale numerical simulation results. The formation of this dryline is analogous to that on the Great Plains of the United States, and it is conducive to CI with mesoscale updrafts generated from the baroclinic frontogenesis, and with favorable instability immediately on the moist side. Prior to the front–dryline merger, as the cold front approached the observed boundary layer convergence line, or the simulated meso-γ-scale secondary dryline, CI occurred ahead of the cold front with little contribution from frontogenetic baroclinity of the dryline. The cold front then merged with the dryline, and the baroclinity of the dryline was enhanced by the associated convergence, to a degree comparable to that caused by frontogenesis of the dryline itself, thus leading to more CI. During the front–dryline merger, meso-γ-scale discrete cold pools associated with the cold front led to a diverse distribution of CI.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mingxuan Chen, mxchen@ium.cn

Abstract

A case study is presented of convection initiation (CI) resulting from the merger of a cold front with a dryline in southwestern Beijing, China, on the afternoon of 11 June 2011. This process is analyzed with S-band Doppler radar data, surface automatic weather station data, and mesoscale numerical simulation results. The formation of this dryline is analogous to that on the Great Plains of the United States, and it is conducive to CI with mesoscale updrafts generated from the baroclinic frontogenesis, and with favorable instability immediately on the moist side. Prior to the front–dryline merger, as the cold front approached the observed boundary layer convergence line, or the simulated meso-γ-scale secondary dryline, CI occurred ahead of the cold front with little contribution from frontogenetic baroclinity of the dryline. The cold front then merged with the dryline, and the baroclinity of the dryline was enhanced by the associated convergence, to a degree comparable to that caused by frontogenesis of the dryline itself, thus leading to more CI. During the front–dryline merger, meso-γ-scale discrete cold pools associated with the cold front led to a diverse distribution of CI.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mingxuan Chen, mxchen@ium.cn
Save
  • Atkins, N. T., and R. M. Wakimoto, 1991: Wet microburst activity over the southeastern United States: Implications for forecasting. Wea. Forecasting, 6, 470482, doi:10.1175/1520-0434(1991)006<0470:WMAOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944969, doi:10.1175/1520-0493(1995)123<0944:OOTSBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev., 126, 525550, doi:10.1175/1520-0493(1998)126<0525:OOTFSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaji, V., and T. L. Clark, 1988: Scale selection in locally forced convective fields and the initiation of deep cumulus. J. Atmos. Sci., 45, 31883211, doi:10.1175/1520-0469(1988)045<3188:SSILFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergmaier, P. T., B. Geerts, Z. Wang, B. Liu, and P. C. Campbell, 2014: A dryline in southeast Wyoming. Part II: Airborne in situ and Raman lidar observations. Mon. Wea. Rev., 142, 29612977, doi:10.1175/MWR-D-13-00314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. II, Observations and Theory of Weather Systems, Oxford University Press, 594 pp.

  • Bluestein, H. B., and S. S. Parker, 1993: Modes of isolated, severe convective storm formation along the dryline. Mon. Wea. Rev., 121, 13541372, doi:10.1175/1520-0493(1993)121<1354:MOISCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. L. Weisman, 2000: The interaction of numerically simulated supercells initiated along lines. Mon. Wea. Rev., 128, 31283149, doi:10.1175/1520-0493(2000)128<3128:TIONSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Coauthors, 2007: The Convective Storm Initiation Project. Bull. Amer. Meteor. Soc., 88, 19391955, doi:10.1175/BAMS-88-12-1939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buban, M. S., C. L. Ziegler, E. N. Rasmussen, and Y. P. Richardson, 2007: The dryline on 22 May 2002 during IHOP: Ground-radar and in situ data analyses of the dryline and boundary layer evolution. Mon. Wea. Rev., 135, 24732505, doi:10.1175/MWR3453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buban, M. S., C. L. Ziegler, E. R. Mansell, and Y. P. Richardson, 2012: Simulation of dryline misovortex dynamics and cumulus formation. Mon. Wea. Rev., 140, 35253551, doi:10.1175/MWR-D-11-00189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, doi:10.1175/2009WAF2222222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625629, doi:10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and J. S. Evans, 2003: Proximity sounding analysis for derechos and supercells: An assessment of similarities and differences. Atmos. Res., 67–68, 117133, doi:10.1016/S0169-8095(03)00047-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., 2008: Dryline characteristics near Lubbock, Texas, based on radar and West Texas Mesonet data for May 2005 and May 2006. Wea. Forecasting, 23, 392406, doi:10.1175/2007WAF2007044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golden, J. H., 1980: Forecasting and research on severe storms in China: A summary of two seminars. Bull. Amer. Meteor. Soc., 61, 721, doi:10.1175/1520-0477(1980)061<0007:SNFARO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hane, C. E., C. L. Ziegler, and H. B. Bluestein, 1993: Investigation of the dryline and convective storms initiated along the dryline: Field experiments during COPS-91. Bull. Amer. Meteor. Soc., 74, 21332145, doi:10.1175/1520-0477(1993)074<2133:IOTDAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, R. P., J. M. Fritsch, and P. M. Markowski, 2005: Environmental distinctions between cellular and slabular convective lines. Mon. Wea. Rev., 133, 26692691, doi:10.1175/MWR3002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., 1984: The role of an apparent mesoscale frontogenetic circulation in squall line initiation. Mon. Wea. Rev., 112, 20902111, doi:10.1175/1520-0493(1984)112<2090:TROAAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and J. McCarthy, 1982: The evolution of an Oklahoma dryline. Part II: Boundary layer forcing of mesoconvective systems. J. Atmos. Sci., 39, 237257, doi:10.1175/1520-0469(1982)039<0237:TEOAOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and W. L. Clark, 1999: A nonclassical cold front observed during COPS-91: Frontal structure and the process of severe storm initiation. J. Atmos. Sci., 56, 28622890, doi:10.1175/1520-0469(1999)056<2862:ANCFOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. John Wiley & Sons, 407 pp., doi:10.1002/9780470682104.

    • Crossref
    • Export Citation
  • McGuire, E. L., 1962: The vertical structure of three dry lines as revealed by aircraft traverses. National Severe Storms Project Rep. 7, 11 pp.

  • Miao, Q., and B. Geerts, 2007: Finescale vertical structure and dynamics of some dryline boundaries observed in IHOP. Mon. Wea. Rev., 135, 41614184, doi:10.1175/2007MWR1982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 6316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Murphey, H. V., R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, 2006: Dryline on 19 June 2002 during IHOP. Part I: Airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation. Mon. Wea. Rev., 134, 406430, doi:10.1175/MWR3063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and R. M. Wakimoto, 1999: The interaction of a Pacific cold front with shallow air masses east of the Rocky Mountains. Mon. Wea. Rev., 127, 21022127, doi:10.1175/1520-0493(1999)127<2102:TIOAPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogura, Y., and Y. Chen, 1977: A life history of an intense mesoscale convective storm in Oklahoma. J. Atmos. Sci., 34, 14581476, doi:10.1175/1520-0469(1977)034<1458:ALHOAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., M. A. Shapiro, R. M. Hardesty, R. J. Zamora, and J. M. Intrieri, 1991: The finescale structure of a west Texas dryline. Mon. Wea. Rev., 119, 12421258, doi:10.1175/1520-0493(1991)119<1242:TFSOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., M. A. Shapiro, and E. Miller, 2000: The mesoscale structure of a nocturnal dryline and of a frontal-dryline merger. Mon. Wea. Rev., 128, 38243838, doi:10.1175/1520-0493(2001)129<3824:TMSOAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhea, J. O., 1966: A study of thunderstorm formation along dry lines. J. Appl. Meteor., 5, 5863, doi:10.1175/1520-0450(1966)005<0058:ASOTFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., and C. A. Doswell III, 1995: A case for detailed surface analysis. Bull. Amer. Meteor. Soc., 76, 505521, doi:10.1175/1520-0477(1995)076<0505:ACFDSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1986: The dryline. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 549–572.

    • Crossref
    • Export Citation
  • Schultz, D. M., 2010: How to research and write effective case studies in meteorology. Electron. J. Severe Storms Meteor., 5 (2). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/66.]

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., C. C. Weiss, and P. M. Hoffman, 2007: The synoptic regulation of dryline intensity. Mon. Wea. Rev., 135, 16991709, doi:10.1175/MWR3376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sipprell, B. D., and B. Geerts, 2007: Finescale vertical structure and evolution of a preconvective dryline on 19 June 2002. Mon. Wea. Rev., 135, 21112134, doi:10.1175/MWR3354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, D., C. Sun, D. Yu, Q. Li, and D. Lu, 2010: The development and application of a very-short-range interactive prediction system (in Chinese). Climatic Environ. Res., 15, 571578.

    • Search Google Scholar
    • Export Citation
  • Sun, S., and C. Meng, 1992: The formation of a meso-β dry line and local convective rainstorm. Acta Meteor. Sin., 50, 571578.

  • Sun, W.-Y., and Y. Ogura, 1979: Boundary-layer forcing as a possible trigger to squall line formation. J. Atmos. Sci., 36, 235254, doi:10.1175/1520-0469(1979)036<0235:BLFAAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, W.-Y., and C.-C. Wu, 1992: Formation and diurnal variation of the dryline. J. Atmos. Sci., 49, 16061619, doi:10.1175/1520-0469(1992)049<1606:FADVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., 2013: Mesoscale-Convective Processes in the Atmosphere. Cambridge University Press, 346 pp.

    • Crossref
    • Export Citation
  • Wakimoto, R. M., and H. V. Murphey, 2009: Analysis of a dryline during IHOP: Implications for convection initiation. Mon. Wea. Rev., 137, 912936, doi:10.1175/2008MWR2584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. V. Murphey, 2010a: Frontal and radar refractivity analyses of the dryline on 11 June 2002 during IHOP. Mon. Wea. Rev., 138, 228241, doi:10.1175/2009MWR2991.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. V. Murphey, 2010b: Analysis of convergence boundaries observed during IHOP_2002. Mon. Wea. Rev., 138, 27372760, doi:10.1175/2010MWR3266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, E. V. Browell, and S. Ismail, 2006: The “triple point” on 24 May 2002 during IHOP. Part I: Airborne Doppler and LASE analyses of the frontal boundaries and convection initiation. Mon. Wea. Rev., 134, 231250, doi:10.1175/MWR3066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277, doi:10.1175/BAMS-85-2-253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, doi:10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., and H. B. Bluestein, 2002: Airborne pseudo-dual Doppler analysis of a dryline-outflow boundary intersection. Mon. Wea. Rev., 130, 12071226, doi:10.1175/1520-0493(2002)130<1207:APDDAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., H. B. Bluestein, and A. L. Pazmany, 2006: Finescale radar observations of the 22 May 2002 dryline during the International H2O Project (IHOP). Mon. Wea. Rev., 134, 273293, doi:10.1175/MWR3068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, doi:10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and C. K. Mueller, 1993: Nowcasts of thunderstorm initiation and evolution. Wea. Forecasting, 8, 113131, doi:10.1175/1520-0434(1993)008<0113:NOTIAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, doi:10.1175/MWR3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 20792099, doi:10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and W. J. Martin, 2006: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part II: Horizontal convective rolls and convective initiation. Mon. Wea. Rev., 134, 172191, doi:10.1175/MWR3072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, X., X. Yao, T. Xiong, X. Zhou, H. Wu, B. Deng, and Y. Song, 2006: The Principle and Application of Doppler Weather Radar (in Chinese). China Meteorological Press, 314 pp.

  • Zheng, Y., C. Zhang, J. Chen, M. Chen, and Y. Wang, 2007: Climatic background of warm-season convective weather in North China based on the NCEP analysis (in Chinese). Beijing Da Xue Xue Bao Zi Ran Ke Xue Bao, 43, 600608.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and C. E. Hane, 1993: An observational study of the dryline. Mon. Wea. Rev., 121, 11341151, doi:10.1175/1520-0493(1993)121<1134:AOSOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13, 11061131, doi:10.1175/1520-0434(1998)013<1106:TIOMCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., W. J. Martin, R. A. Pielke, and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci., 52, 263285, doi:10.1175/1520-0469(1995)052<0263:AMSOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., T. J. Lee, and R. A. Pielke Sr., 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev., 125, 10011026, doi:10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. N. Rasmussen, M. S. Buban, Y. P. Richardson, L. J. Miller, and R. M. Rabin, 2007: The “triple point” on 24 May 2002 during IHOP. Part II: Ground-radar and in situ boundary layer analysis of cumulus development and convection initiation. Mon. Wea. Rev., 135, 24432472, doi:10.1175/MWR3411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1263 655 224
PDF Downloads 406 82 12