Simultaneous Ensemble Postprocessing for Multiple Lead Times with Standardized Anomalies

Markus Dabernig Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria

Search for other papers by Markus Dabernig in
Current site
Google Scholar
PubMed
Close
,
Georg J. Mayr Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria

Search for other papers by Georg J. Mayr in
Current site
Google Scholar
PubMed
Close
,
Jakob W. Messner Institute of Atmospheric and Cryospheric Sciences, and Department of Statistics, University of Innsbruck, Innsbruck, Austria

Search for other papers by Jakob W. Messner in
Current site
Google Scholar
PubMed
Close
, and
Achim Zeileis Department of Statistics, University of Innsbruck, Innsbruck, Austria

Search for other papers by Achim Zeileis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Separate statistical models are typically fit for each forecasting lead time to postprocess numerical weather prediction (NWP) ensemble forecasts. Using standardized anomalies of both NWP values and observations eliminates most of the lead-time-specific characteristics so that several lead times can be forecast simultaneously. Standardized anomalies are formed by subtracting a climatological mean and dividing by the climatological standard deviation. Simultaneously postprocessing forecasts between +12 and +120 h increases forecast coherence between lead times, yields a temporal resolution as high as the observation interval (e.g., up to 10 min), and speeds up computation times while achieving a forecast skill comparable to the conventional method.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society.

Corresponding author: Markus Dabernig, markus.dabernig@uibk.ac.at

Abstract

Separate statistical models are typically fit for each forecasting lead time to postprocess numerical weather prediction (NWP) ensemble forecasts. Using standardized anomalies of both NWP values and observations eliminates most of the lead-time-specific characteristics so that several lead times can be forecast simultaneously. Standardized anomalies are formed by subtracting a climatological mean and dividing by the climatological standard deviation. Simultaneously postprocessing forecasts between +12 and +120 h increases forecast coherence between lead times, yields a temporal resolution as high as the observation interval (e.g., up to 10 min), and speeds up computation times while achieving a forecast skill comparable to the conventional method.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society.

Corresponding author: Markus Dabernig, markus.dabernig@uibk.ac.at
Save
  • Dabernig, M., G. J. Mayr, J. W. Messner, and A. Zeileis, 2017: Spatial ensemble post-processing with standardized anomalies. Quart. J. Roy. Meteor. Soc., 143, 909916, doi:10.1002/qj.2975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, doi:10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., and A. E. Raftery, 2007: Strictly proper scoring rules, prediction, and estimation. J. Amer. Stat. Assoc., 102, 359378, doi:10.1198/016214506000001437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Golfman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, doi:10.1175/MWR2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopson, T. M., 2014: Assessing the ensemble spread–error relationship. Mon. Wea. Rev., 142, 11251142, doi:10.1175/MWR-D-12-00111.1.

  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539, doi:10.1016/j.jcp.2007.02.014.

  • Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34A, 505513, doi:10.1111/j.2153-3490.1982.tb01839.x.

    • Search Google Scholar
    • Export Citation
  • Messner, J. W., G. J. Mayr, and A. Zeileis, 2016: Heteroscedastic censored and truncated regression with crch. R J., 8 (1), 173181.

  • Möller, A., and J. Groß, 2016: Probabilistic temperature forecasting based on an ensemble autoregressive modification. Quart. J. Roy. Meteor. Soc., 142, 13851394, doi:10.1002/qj.2741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raftery, A., and T. Gneiting, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, doi:10.1175/MWR2906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigby, R. A., and D. M. Stasinopoulos, 2005: Generalized additive models for location, scale and shape. J. Roy. Stat. Soc. Ser. C Appl. Stat., 54, 507554, doi:10.1111/j.1467-9876.2005.00510.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting, 2013: Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci., 28, 616640, doi:10.1214/13-STS443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and L. Büermann, 2014: Spatially adaptive post-processing of ensemble forecasts for temperature. J. Roy. Stat. Soc. Ser. C Appl. Stat., 63, 405422, doi:10.1111/rssc.12040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stasinopoulos, D. M., and R. A. Rigby, 2007: Generalized Additive Models for Location Scale and Shape (GAMLSS) in R. J. Stat. Software, 23, 146, doi:10.18637/jss.v023.i07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, R., N. Umlauf, J. W. Messner, G. J. Mayr, and A. Zeileis, 2017: Ensemble postprocessing of daily precipitation sums over complex terrain using censored high-resolution standardized anomalies. Mon. Wea. Rev., 145, 955969, doi:10.1175/MWR-D-16-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Vol. 100. 3rd ed. Academic Press, 704 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 674 298 97
PDF Downloads 471 110 17