Evaluation of MJO Predictive Skill in Multiphysics and Multimodel Global Ensembles

Benjamin W. Green Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by Benjamin W. Green in
Current site
Google Scholar
PubMed
Close
,
Shan Sun Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by Shan Sun in
Current site
Google Scholar
PubMed
Close
,
Rainer Bleck NASA Goddard Institute for Space Studies, New York, New York, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by Rainer Bleck in
Current site
Google Scholar
PubMed
Close
,
Stanley G. Benjamin NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by Stanley G. Benjamin in
Current site
Google Scholar
PubMed
Close
, and
Georg A. Grell NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by Georg A. Grell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Monthlong hindcasts of the Madden–Julian oscillation (MJO) from the atmospheric Flow-following Icosahedral Model coupled with an icosahedral-grid version of the Hybrid Coordinate Ocean Model (FIM-iHYCOM), and from the coupled Climate Forecast System, version 2 (CFSv2), are evaluated over the 12-yr period 1999–2010. Two sets of FIM-iHYCOM hindcasts are run to test the impact of using Grell–Freitas (FIM-CGF) versus simplified Arakawa–Schubert (FIM-SAS) deep convection parameterizations. Each hindcast set consists of four time-lagged ensemble members initialized weekly every 6 h from 1200 UTC Tuesday to 0600 UTC Wednesday.

The ensemble means of FIM-CGF, FIM-SAS, and CFSv2 produce skillful forecasts of a variant of the Real-time Multivariate MJO (RMM) index out to 19, 17, and 17 days, respectively; this is consistent with FIM-CGF having the lowest root-mean-square errors (RMSEs) for zonal winds at both 850 and 200 hPa. FIM-CGF and CFSv2 exhibit similar RMSEs in RMM, and their multimodel ensemble mean extends skillful RMM prediction out to 21 days. Conversely, adding FIM-SAS—with much higher RMSEs—to CFSv2 (as a multimodel ensemble) or FIM-CGF (as a multiphysics ensemble) yields either little benefit, or even a degradation, compared to the better single-model ensemble mean. This suggests that multiphysics/multimodel ensemble mean forecasts may only add value when the individual models possess similar skill and error. An atmosphere-only version of FIM-CGF loses skill after 11 days, highlighting the importance of ocean coupling. Further examination reveals some sensitivity in skill and error metrics to the choice of MJO index.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Benjamin W. Green, ben.green@noaa.gov

Abstract

Monthlong hindcasts of the Madden–Julian oscillation (MJO) from the atmospheric Flow-following Icosahedral Model coupled with an icosahedral-grid version of the Hybrid Coordinate Ocean Model (FIM-iHYCOM), and from the coupled Climate Forecast System, version 2 (CFSv2), are evaluated over the 12-yr period 1999–2010. Two sets of FIM-iHYCOM hindcasts are run to test the impact of using Grell–Freitas (FIM-CGF) versus simplified Arakawa–Schubert (FIM-SAS) deep convection parameterizations. Each hindcast set consists of four time-lagged ensemble members initialized weekly every 6 h from 1200 UTC Tuesday to 0600 UTC Wednesday.

The ensemble means of FIM-CGF, FIM-SAS, and CFSv2 produce skillful forecasts of a variant of the Real-time Multivariate MJO (RMM) index out to 19, 17, and 17 days, respectively; this is consistent with FIM-CGF having the lowest root-mean-square errors (RMSEs) for zonal winds at both 850 and 200 hPa. FIM-CGF and CFSv2 exhibit similar RMSEs in RMM, and their multimodel ensemble mean extends skillful RMM prediction out to 21 days. Conversely, adding FIM-SAS—with much higher RMSEs—to CFSv2 (as a multimodel ensemble) or FIM-CGF (as a multiphysics ensemble) yields either little benefit, or even a degradation, compared to the better single-model ensemble mean. This suggests that multiphysics/multimodel ensemble mean forecasts may only add value when the individual models possess similar skill and error. An atmosphere-only version of FIM-CGF loses skill after 11 days, highlighting the importance of ocean coupling. Further examination reveals some sensitivity in skill and error metrics to the choice of MJO index.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Benjamin W. Green, ben.green@noaa.gov
Save
  • Benjamin, S., S. Sun, G. Grell, B. Green, R. Bleck, and H. Li, 2017: Improved subseasonal prediction with advanced coupled models including the 30km FIM-HYCOM coupled model. European Geosciences Union General Assembly 2017, Vienna, Austria, EGU, EGU2017–11097. [Available online at http://meetingorganizer.copernicus.org/EGU2017/EGU2017-11097.pdf.]

    • Search Google Scholar
    • Export Citation
  • Berner, J., S.-Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 19721995, doi:10.1175/2010MWR3595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, doi:10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., and Coauthors, 2015: A vertically flow-following icosahedral grid model for medium-range and seasonal prediction. Part I: Model description. Mon. Wea. Rev., 143, 23862403, doi:10.1175/MWR-D-14-00300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., B. Vié, O. Nuissier, and L. Raynaud, 2012: Impact of stochastic physics in a convection-permitting ensemble. Mon. Wea. Rev., 140, 37063721, doi:10.1175/MWR-D-12-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyle, J. S., S. A. Klein, D. D. Lucas, H.-Y. Ma, J. Tannahill, and S. Xie, 2015: The parametric sensitivity of CAM5’s MJO. J. Geophys. Res. Atmos., 120, 14241444, doi:10.1002/2014JD022507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Candille, G., 2009: The multiensemble approach: The NAEFS example. Mon. Wea. Rev., 137, 16551665, doi:10.1175/2008MWR2682.1.

  • DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere–ocean coupled processes in the Madden–Julian oscillation. Rev. Geophys., 53, 10991154, doi:10.1002/2014RG000478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, R. E., M. S. J. Harrison, R. J. Graham, and K. R. Mylne, 2000: Joint medium-range ensembles from the Met. Office and ECMWF systems. Mon. Wea. Rev., 128, 31043127, doi:10.1175/1520-0493(2000)128<3104:JMREFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, V., M. Abaza, F. Anctil, and R. Turcotte, 2014: Why should ensemble spread match the RMSE of the ensemble mean? J. Hydrometeor., 15, 17081713, doi:10.1175/JHM-D-14-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., J.-Y. Lee, P.-C. Hsu, H. Taniguchi, B. Wang, W. Wang, and S. Weaver, 2013: Multi-model MJO forecasting during DYNAMO/CINDY period. Climate Dyn., 41, 10671081, doi:10.1007/s00382-013-1859-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden–Julian oscillation forecasts: A CLIVAR MJO working group project. Bull. Amer. Meteor. Soc., 91, 12471258, doi:10.1175/2010BAMS2816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, doi:10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimit, E. P., and C. F. Mass, 2002: Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest. Wea. Forecasting, 17, 192205, doi:10.1175/1520-0434(2002)017<0192:IROAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and G. N. Kiladis, 2014: Skill of the MJO and Northern Hemisphere blocking in GEFS medium-range reforecasts. Mon. Wea. Rev., 142, 868885, doi:10.1175/MWR-D-13-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, doi:10.1175/WAF-D-10-05038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., S. J. Woolnough, and G. M. S. Lister, 2013: The effects of explicit versus parameterized convection on the MJO in a large-domain high-resolution tropical case study. Part I: Characterization of large-scale organization and propagation. J. Atmos. Sci., 70, 13421369, doi:10.1175/JAS-D-12-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004: The Madden–Julian Oscillation and its impact on Northern Hemisphere winter predictability. Mon. Wea. Rev., 132, 14621471, doi:10.1175/1520-0493(2004)132<1462:TMOAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., A. Hazra, and L. M. V. Carvalho, 2015: The Madden–Julian oscillation and boreal winter forecast skill: An analysis of NCEP CFSv2 reforecasts. J. Climate, 28, 62976307, doi:10.1175/JCLI-D-15-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, doi:10.1007/s00382-011-1159-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, doi:10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, V. E. Toma, and D. Kim, 2014: Predictability and prediction skill of the MJO in two operational forecasting systems. J. Climate, 27, 53645378, doi:10.1175/JCLI-D-13-00480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2008: Forecast skill of the Madden–Julian Oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 41304149, doi:10.1175/2008MWR2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., B. Wang, K. R. Sperber, T. Li, and G. A. Meehl, 2005: MJO in the NCAR CAM2 with the Tiedtke convective scheme. J. Climate, 18, 30073020, doi:10.1175/JCLI3458.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., Q. Zhang, C. Zhang, Y. Zhu, M. Khairoutdinov, H.-M. Kim, C. Schumacher, and M. Zhang, 2016: A revised real-time multivariate MJO index. Mon. Wea. Rev., 144, 627642, doi:10.1175/MWR-D-15-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, doi:10.3402/tellusa.v21i3.10086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neena, J. M., J. Y. Lee, D. Waliser, B. Wang, and X. Jiang, 2014: Predictability of the Madden–Julian oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). J. Climate, 27, 45314543, doi:10.1175/JCLI-D-13-00624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, doi:10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rashid, H. A., H. H. Hendon, M. C. Wheeler, and O. Alves, 2011: Prediction of the Madden–Julian oscillation with the POAMA dynamical prediction system. Climate Dyn., 36, 649661, doi:10.1007/s00382-010-0754-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Seo, H., A. C. Subramanian, A. J. Miller, and N. R. Cavanaugh, 2014: Coupled impacts of the diurnal cycle of sea surface temperature on the Madden–Julian oscillation. J. Climate, 27, 84228443, doi:10.1175/JCLI-D-14-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, doi:10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319, doi:10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tracton, M. S., and E. Kalnay, 1993: Operational ensemble prediction at the National Meteorological Center: Practical aspects. Wea. Forecasting, 8, 379398, doi:10.1175/1520-0434(1993)008<0379:OEPATN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, W.-L., B.-J. Tsuang, N. S. Keenlyside, H.-H. Hsu, and C.-Y. Tu, 2015: Resolving the upper-ocean warm layer improves the simulation of the Madden–Julian oscillation. Climate Dyn., 44, 14871503, doi:10.1007/s00382-014-2315-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., M. C. Wheeler, H. H. Hendon, C. J. Schreck III, C. D. Thorncroft, and G. N. Kiladis, 2013: A modified multivariate Madden–Julian oscillation index using velocity potential. Mon. Wea. Rev., 141, 41974210, doi:10.1175/MWR-D-12-00327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 18891899, doi:10.1002/qj.2256.

  • Wang, W., M.-P. Hung, S. J. Weaver, A. Kumar, and X. Fu, 2014: MJO prediction in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 25092520, doi:10.1007/s00382-013-1806-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., F. Vitart, and M. A. Balmaseda, 2007: The role of the ocean in the Madden–Julian oscillation: Implications for MJO prediction. Quart. J. Roy. Meteor. Soc., 133, 117128, doi:10.1002/qj.4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., M. Zhao, X. Jiang, S.-J. Lin, T. Li, X. Fu, and G. Vecchi, 2015: The 3–4 week MJO prediction skill in a GFDL coupled model. J. Climate, 28, 53515364, doi:10.1175/JCLI-D-15-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., J. Gottschalck, E. D. Maloney, M. W. Moncrieff, F. Vitart, D. E. Waliser, B. Wang, and M. C. Wheeler, 2013: Cracking the MJO nut. Geophys. Res. Lett., 40, 12231230, doi:10.1002/grl.50244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. B. Neale, M. Jochum, and R. Murtugudde, 2012: Improved Madden–Julian oscillations with improved physics: The impact of modified convection parameterizations. J. Climate, 25, 11161136, doi:10.1175/2011JCLI4059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2654 2178 700
PDF Downloads 306 60 8